Structural applications of composite materials are used in various structures of the oil and gas industry, water supply and sewage systems and a wide range of industries, such as marine, aerospace, and military industries. This paper aims to numerically investigate the influence of local dent caused by an indenter on the buckling behaviour of glass fabric-reinforced polymer cylindrical shells when subjected to external pressure. For this purpose, 24 finite element numerical models with five layers and a stacking sequence [30/-30/30/-30/30] were simulated in ABAQUS. The effect of dent depth (2, 4, 6 and 8 mm) and orientation (0 and 90 degrees) that was created at the mid-height, the 1/3rd and the 2/3rd of the shell height on the buckling behaviour of the composite cylindrical shells were evaluated. The results underscored that whilst the location of the local dent and the depth affected the shells’ buckling capacity, the dent's orientation had minimal effect on the buckling capacity of the cylindrical shells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.