The increasing penetration of PV into the distribution grid leads to congestion, causing detrimental power quality issues. Moreover, the multiple small photovoltaic (PV) systems and battery energy storage systems (BESSs) result in increasing conversion losses. A low-voltage DC (LVDC) backbone to interconnect these assets would decrease the conversion losses and is a promising solution for a more optimal integration of PV systems. The multiple small PV systems can be replaced by shared assets with large common PV installations and a large BESS. Sharing renewable energy and aggregation are activities that are stimulated by the European Commission and lead to a substantial benefit in terms of self-consumption index (SCI) and self-sufficiency index (SSI). In this study, the benefit of an LVDC backbone is investigated compared to using a low-voltage AC (LVAC) system. It is found that the cable losses increase by 0.9 percent points and the conversion losses decrease by 12 percent points compared to the traditional low-voltage AC (LVAC) system. The SCI increases by 2 percent points and the SSI increases by 6 percent points compared to using an LVAC system with shared meter. It is shown that an LVDC backbone is only beneficial with a PV penetration level of 65% and that the BESS can be reduced by 22% for the same SSI.
A description is given of the vertical and horizontal components of the forces applied to the floor by the foot in walking. Information about the characteristics of the normal force pattern was obtained from the analysis of the gait of 214 normal subjects (108 young adults, 63 elderly people and 43 children). It is suggested that the normal gait pattern is characterised by a marked population variability, a considerable step-to-step consistency and symmetry of the forces from both feet. The force pattern in pathological gait secondary to disorders of the foot also shows a marked repeatability but is characterised by a pronounced asymmetry. A specific disorder of the foot does not necessarily result in a typical corresponding force pattern. The measured data allow a functional diagnosis and show how the patient is reacting to his disability. A force visualisation system is proposed permitting the immediate comparison between the normal and the affected foot and allowing long term assessment of subsequent changes. The force plates used also allow the recording of the progression of the centre of pressure in the foot and the measurement of the torque around the ankle joint.
This paper proposes a novel feature construction methodology aiming at both clustering yearly load profiles of low-voltage consumers, as well as investigating the stochastic nature of their peak demands. These load profiles describe the electricity consumption over a one-year period, allowing the study of seasonal dependence. The clustering of load curves has been extensively studied in literature, where clustering of daily or weekly load curves based on temporal features has received the most research attention. The proposed feature construction aims at generating a new set of variables that can be used in machine learning applications, stepping away from traditional, high dimensional, chronological feature sets. This paper presents a novel feature set based on two types of features: respectively the consumption time window on a daily and weekly basis, and the time of occurrence of peak demands. An analytic expression for the load duration curve is validated and leveraged in order to define the the region that has to be considered as peak demand region. The clustering results using the proposed set of features on a dataset of measured Flemish consumers at 15-min resolution are evaluated and interpreted, where special attention is given to the stochastic nature of the peak demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.