The production of hydrogen containing very low levels of carbon monoxide for use in polymer electrolyte fuel cells requires the development of catalysts that show very high activity at low temperatures where the equilibrium for the removal of carbon monoxide using the water-gas shift reaction is favourable. It has been claimed that oxide-supported gold catalysts have the required high activity but there is considerable uncertainty in the literature about the feasibility of using these catalysts under real conditions. By comparing the activity of gold catalysts with that of platinum catalysts it is shown that well-prepared gold catalysts are significantly more active than the corresponding platinum catalysts. However, the method of preparation and pre-treatment of the gold catalysts is critical and activity variations of several orders of magnitude can be observed depending on the methods chosen. It is shown that an intimate contact between gold and the oxide support is important and any preparative procedure that does not generate such an interaction, or any subsequent treatment that can destroy such an interaction, may result in catalysts with low activity. The oxidation state and structure of active gold catalysts for the water-gas shift reaction is shown to comprise gold primarily in a zerovalent metallic state but in intimate contact with the support. This close contact between small metallic gold particles and the support may result in the "atoms" at the point of contact having a net charge (most probably cationic) but the high activity is associated with the presence of metallic gold. Both in situ XPS and XANES appear unequivocal on this point and this conclusion is consistent with similar measurements on gold catalysts even when used for CO oxidation. In situ EXAFS measurements under water gas shift conditions show that the active form of gold is a small gold cluster in intimate contact with the oxide support. The importance of the gold/oxide interface is indicated but the possible role of special sites (e.g., edge sites) on the gold clusters cannot be excluded. These may be important for CO oxidation but the fact that water has to be activated in the water gas shift reaction may point towards a more dominant role for the interfacial sites. The mechanism of the water gas shift reaction on gold and other low temperature catalysts has been widely investigated but little agreement exists. However, it is shown that a single "universal" model is consistent with much of the experimental literature. In this, it is proposed that the dominant surface intermediate is a function of reaction conditions. For example, as the temperature is increased the dominant species changes from a carbonate or carboxylate species, to a formate species and eventually at high temperatures to a mechanism that is characteristic of a redox process. Similar changes in the dominant intermediate are observed with changes in the gas composition. Overall, it is shown that reported variations in the kinetics, structure and reaction mechanism f...
A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.