This paper details five aeroelastic modelling methods applied to the study of an example high aspect ratio wing subject to high loads resulting in large structural deformations. Each method is discussed in turn and example static results from each are compared. Overall agreement is illustrated between the methods for key quantities of interest although aerodynamic modelling choices regarding the orientation of aero forces is observed to play a significant role in the agreement between predicted distributed loads and deflections. Quantitative differences resulting from linearisation of the wing model are also presented and discussed. It is found that by linearising the problem, wing deflection, aerodynamic forces and root bending are all over-estimated. Large differences are also observed between linear and nonlinear predictions of root twist, however the modelling of drag effects is deemed important to the exact nature of the observed discrepancy. Altogether, linearised assumptions are shown to have a noticeable impact on the accuracy of predicted results for the considered wing test case and are deemed unsuitable in isolation for the analysis of this class of flexible problem.
An initial design of a morphing wingtip for a regional jet aircraft is developed and evaluated. The adaptive wingtip concept is based upon a chiral-type internal structure, enabling controlled cant angle orientation, camber, and twist throughout the flight envelope. A baseline turbofan aircraft configuration model is used as the benchmark to assess the device. Computational fluid dynamics based aerodynamics are used to evaluate the required design configurations for the device at different points across the flight envelope in terms of lift/drag and bending moment distribution along the span, complemented by panel-method-based gust load computations. Detailed studies are performed to show how the chiral structure can facilitate the required shape changes in twist, camber, and cant. Actuator requirements and limitations are assessed, along with an evaluation of the aerodynamic gains from the inclusion of the device versus power and weight penalties. For a typical mission, it was found that savings of around 2% in fuel weight are possible using the morphing wingtip device. A similar reduction in weight due to passive gust load alleviation is also possible with a slight change of configuration.
An initial design of a morphing wing-tip for a Regional Jet aircraft is developed and evaluated. The adaptive wing-tip concept is based upon a chiral type internal structure, enabling controlled cant angle orientation, camber and twist throughout the flight envelope. A baseline Turbo-Fan Aircraft configuration model is used as the benchmark to assess the device. CFD based aerodynamics are used to evaluate the required design configurations for the device at different points across the flight envelope in terms of lift/drag and bending moment distribution along the span, complemented by panel method based gust load computations. Detailed studies are performed to show how the chiral structure can facilitate the required shape changes in twist, camber and cant. Actuator requirements and limitations are assessed, along with an evaluation of the aerodynamic gains from the inclusion of the device versus power and weight penalties. For a typical mission it was found that savings of around 2% in fuel weight are possible using the morphing wing-tip device. A similar reduction in weight due to passive gust loads alleviation is also possible with a slight change of configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.