C5a anaphylatoxin, a potent inflammatory mediator, is known to act through a specific G protein coupled receptor. However, some of the complex effects of C5a in vivo may not be explained solely by the deletion of the known receptor. Here, we show that an orphan receptor, identified as C5L2, is a high affinity C5a binding protein. Unlike the previously described C5aR, C5L2 is obligately uncoupled from heterotrimeric G proteins, in part by virtue of an amino acid alteration in the so-called DRY sequence at the end of the third transmembrane segment. Both human and murine C5L2 bear a leucine for arginine replacement at this site. C5L2, when transfected into several cell types, is weakly phosphorylated in transfected cells following binding of C5a but does not induce significant activation of MAP kinases, mediate calcium flux, or stimulate chemotaxis. Bone marrow cells from wild type respond robustly to C5a with induction and suppression of a number of inflammation related genes. In contrast, C5a receptor deficient mice, which bear C5L2 alone, do not respond to C5a with changes in gene transcription by microarray analyses. Biophysical properties of the C5L2, including slow ligand on and off rates, absence of internalization, and relatively high affinity for the C5a des Arg metabolite, suggest that this receptor may serve to modulate C5a biological functions in vivo. Finally, in contrast to previous reports, we find absolutely no interaction of C5L2 with other anaphylatoxins C3a and C4a.
The dopamine D3 receptor subtype has been recently targeted as a potential neurochemical modulator of the behavioral actions of psychomotor stimulants, such as cocaine. However, definitive behavioral investigations have been hampered by the lack of highly selective D3 agonists and antagonists. In an attempt to design a novel class of D3 ligands with which to study this receptor system, a series of chemically divergent compounds that possessed various structural features that exist within several classes of reputed D3 agents was screened and compared to the recently reported NGB 2904 (58b). On the basis of these results, a novel series of compounds was designed that included functional moieties that were required for high-affinity and selective binding to D3 receptors. All the compounds in this series included an aryl-substituted piperazine ring, a varying alkyl chain linker (C3-C5), and a terminal aryl amide. The compounds were synthesized and evaluated in vitro for binding in CHO cells transfected with human D2, D3, or D4 receptor cDNAs. D3 binding affinities ranged from K(i) = 1.4 to 1460 nM. The most potent analogue in this series, 51, demonstrated a D3/D2 selectivity of 64 and a D3/D4 selectivity of 1300. Structure-activity relationships for this class of ligands at D3 receptors will provide new leads toward the development of highly selective and potent molecular probes that will prove useful in the elucidation of the role D3 receptors play in the psychomotor stimulant and reinforcing properties of cocaine.
Certain of the glycoprotein hormones, including bovine lutropin (bLH), bear asparagine-linked oligosaccharides terminating with the sequence So4-4GaiNAcpIJ-4GlcNAcl1-2Mana. To
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.