This study investigated the effects of adding Bi and In to Sn-3Ag Pb-free solder on undercooling, interfacial reactions with Cu substrates, and the growth kinetics of intermetallic compounds (IMCs). The amount of Sn dominates the undercooling, regardless of the amount or species of further additives. The interfacial IMC that formed in Sn-Ag-Bi-In and Sn-In-Bi solders is Cu 6 Sn 5 , while that in Sn-Ag-In solders is Cu 6 (Sn,In) 5 , since Bi enhances the solubility of In in Sn matrices. The activation energy for the growth of IMCs in Sn-Ag-Bi-In is nearly double that in Sn-Ag-In solders, because Bi in the solder promotes Cu dissolution. The bright particles that form inside the Sn-Ag-In bulk solders are the f-phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.