We have modified an existing technique in order to perform DNA analysis by flow cytometry (FCM) of corneal epithelium from the mouse, rat, chicken, rabbit, and human. This protocol permitted an investigation of human corneal scrapings from several categories: normal, aphakic bullous keratopathy (ABK), keratoconus (KC), Fuch's dystrophy, edema, epithelial dysplasia, and lipid degeneration. No abnormal characteristic cell-kinetic profile was detected when averaged DNA histograms were compared statistically between the normal and either ABK, KC, edema, or Fuch's dystrophy groups. Abnormal DNA histograms were recorded for cell samples that were taken 1) from three individuals who had epithelial dysplasia and 2) from one individual diagnosed with lipid degeneration. The former condition was characterized by histograms that had a subpopulation of cells with an aneuploid amount of DNA or had higher than normal percentages of cells in the S and G2 + M phases of the cell cycle. Corneal cells from the patient who had lipid degeneration had an abnormally high percentage of cells in the G2 + M phases of the cell cycle. The availability of accurate DNA flow cytometric analysis of corneal epithelium allows further studies on this issue from both experimental and clinical situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.