The criterion for chemical equilibrium at specified temperature, pressure, pH, concentration of free magnesium ion, and ionic strength is the transformed Gibbs energy, which can be calculated from the Gibbs energy. The apparent equilibrium constant (written in terms of the total concentrations of reactants like adenosine 5'-triphosphate, rather than in terms of species) yields the standard transformed Gibbs energy of reaction, and the effect of temperature on the apparent equilibrium constant at specified pressure, pH, concentration of free magnesium ion, and ionic strength yields the standard transformed enthalpy of reaction. From the apparent equilibrium constants and standard transformed enthalpies of reaction that have been measured in the adenosine 5'-triphosphate series and the dissociation constants of the weak acids and magnesium complexes involved, it is possible to calculate standard Gibbs energies of formation and standard enthalpies of formation of the species involved at zero ionic strength. This requires the convention that the standard Gibbs energy of formation and standard enthalpy of formation for adenosine in dilute aqueous solutions be set equal to zero. On the basis of this convention, standard transformed Gibbs energies of formation and standard transformed enthalpies of formation of adenosine 5'-trisphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, and adenosine at 298.15 K, 1 bar, pH = 7, a concentration of free magnesium ions of 10(-3) M, and an ionic strength of 0.25 M have been calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.