An electron multileaf collimator (eMLC) has been designed that is unique in that it retracts to 37 cm from the isocenter [63-cm source-to-collimator distance (SCD)] and can be deployed to distances of 20 and 10 cm from the isocenter (80 and 90 cm SCD, respectively). It is expected to be capable of arc therapy at 63 cm SCD; isocentric, fixed-beam therapy at 80 cm SCD; and source-to-surface distance (SSD), fixed-beam therapy at 90 cm SCD. In all positions, its leaves could be used for unmodulated or intensity-modulated therapy. Our goal in the present work is to describe the general characteristics of the eMLC and to demonstrate that its leakage characteristics and dosimetry are adequate for SSD, fixed-beam therapy as an alternative to Cerrobend cutouts with applicators once the prototype's leaves are motorized. Our eMLC data showed interleaf electron leakage at 15 MeV to be less than 0.1% based on a 0.0025 cm manufacturing tolerance, and lateral electron leakage at 5 and 15 MeV to be less than 2%. X-ray leakage through the leaves was 1.6% at 15 MeV. Our data showed that beam penumbra was independent of direction and leaf position. The dosimetric properties of square fields formed by the eMLC were very consistent with those formed by Cerrobend inserts in the 20 x 20 cm2 applicator. Output factors exhibited similar field-size dependence. Airgap factors exhibited almost identical field-size dependence at two SSDs (105 and 110 cm), consistent with the common assumption that airgap factors are applicator independent. Percent depth-dose curves were similar, but showed variations up to 3% in the buildup region. The pencil-beam algorithm (PBA) fit measured data from the eMLC and applicator-cutout systems equally well, and the resulting two-dimensional (2-D) dose distributions, as predicted by the PBA, agreed well at common airgap distance. Simulating patient setups for breast and head and neck treatments showed that almost all fields could be treated using similar SSDs as when using applicators, although head and neck treatments require placing the patient's head on a head-holder treatment table extension. The results of this work confirmed our design goals and support the potential use of the eMLC design in the clinical setting. The eMLC should allow the same treatments as are typically delivered with the electron applicator-cutout system currently used for fixed-beam therapy.
This work compares the accuracy of dose distributions computed using an incident polyenergetic (PE) spectrum and a monoenergetic (ME) spectrum in the electron pencil-beam redefinition algorithm (PBRA). It also compares the times required to compute PE and ME dose distributions. This has been accomplished by comparing PBRA calculated dose distributions with measured dose distributions in water from the National Cancer Institute electron collaborative working group (ECWG) data set. Comparisons are made at 9 and 20 MeV for the 15 x 15 cm2 and 6 x 6 cm2 fields at 100- and 110-cm SSD. The incident PE spectrum is determined by a process that best matches the weighted sum of monoenergetic PBRA calculated central-axis depth doses, each calculated with the energy correction factor, C(E), equal to unity, to the ECWG measured depth dose for the 15 x 15 cm2 field at 100-cm SSD. C(E) is determined by a least square fit to central-axis depth dose for the PE PBRA. Results show that both the PE and ME PBRA accurately calculate central-axis depth dose at 100-cm SSD for the 6 x 6 cm2 and 15 x 15 cm2 field sizes and also at 110-cm SSD for the 15 x 15 cm2 field size. In the penumbral region, the PE PBRA calculation is significantly more accurate than the ME PBRA for all measurement conditions. Both the PE and ME PBRA exhibit significant dose errors (> 4%) outside the penumbra at shallow depths for the 6 x 6 cm2 and 15 x 15 cm2 fields at 100-cm SSD and inside the penumbra at shallow depths for the 6 x 6 cm2 field size at 110-cm SSD. These errors are attributed to the fact that the PBRA does not model collimator scatter in the incident beam. Calculation times for the PE PBRA are approximately 70%-140% greater than those for the ME PBRA. We conclude that the PE PBRA is significantly more accurate than the ME PBRA, and we believe that the increase in time for the PE PBRA will not significantly impact the clinical utility of the PBRA.
The electron pencil-beam redefinition algorithm (PBRA) is currently being refined and evaluated for clinical use. The purpose of this work was to evaluate the accuracy of PBRA-calculated dose in the presence of heterogeneities and to benchmark PBRA dose accuracy for future improvements to the algorithm. The PBRA was evaluated using a measured electron beam dose algorithm verification data set developed at The University of Texas M. D. Anderson Cancer Center. The data set consists of measurements made using 9 and 20 MeV beams in a water phantom with air gaps, internal air and bone heterogeneities, and irregular surfaces. Refinements to the PBRA have enhanced the speed of the dose calculations by a factor of approximately 7 compared to speeds previously reported in published data; a 20 MeV, 15 x 15 cm2 field electron-beam dose distribution took approximately 10 minutes to calculate. The PBRA showed better than 4% accuracy in most experiments. However, experiments involving the low-energy (9 MeV) electron beam and irregular surfaces showed dose differences as great as 22%, in albeit a small fractional region. The geometries used in this study, particularly those in the irregular surface experiments, were extreme in the sense that they are not seen clinically. A more appropriate clinical evaluation in the future will involve comparisons to Monte Carlo generated patient dose distributions using actual computed tomography scan data. The present data also serve as a benchmark against which future enhancements to the PBRA can be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.