Toxoplasma gondii's single mitochondrion is very dynamic and undergoes morphological changes throughout the parasite's life cycle. During parasite division, the mitochondrion elongates, enters the daughter cells just prior to cytokinesis, and undergoes fission. Extensive morphological changes also occur as the parasite transitions from the intracellular environment to the extracellular environment. We show that treatment with the ionophore monensin causes reversible constriction of the mitochondrial outer membrane and that this effect depends on the function of the fission-related protein Fis1. We also observed that mislocalization of the endogenous Fis1 causes a dominant-negative effect that affects the morphology of the mitochondrion. As this suggests that Fis1 interacts with proteins critical for maintenance of mitochondrial structure, we performed various protein interaction trap screens. In this manner, we identified a novel outer mitochondrial membrane protein, LMF1, which is essential for positioning of the mitochondrion in intracellular parasites. Normally, while inside a host cell, the parasite mitochondrion is maintained in a lasso shape that stretches around the parasite periphery where it has regions of coupling with the parasite pellicle, suggesting the presence of membrane contact sites. In intracellular parasites lacking LMF1, the mitochondrion is retracted away from the pellicle and instead is collapsed, as normally seen only in extracellular parasites. We show that this phenotype is associated with defects in parasite fitness and mitochondrial segregation. Thus, LMF1 is necessary for mitochondrial association with the parasite pellicle during intracellular growth, and proper mitochondrial morphology is a prerequisite for mitochondrial division. IMPORTANCE Toxoplasma gondii is an opportunistic pathogen that can cause devastating tissue damage in the immunocompromised and congenitally infected. Current therapies are not effective against all life stages of the parasite, and many cause toxic effects. The single mitochondrion of this parasite is a validated drug target, and it changes its shape throughout its life cycle. When the parasite is inside a cell, the mitochondrion adopts a lasso shape that lies in close proximity to the pellicle. The functional significance of this morphology is not understood and the proteins involved are currently not known. We have identified a protein that is required for proper mitochondrial positioning at the periphery and that likely plays a role in tethering this organelle. Loss of this protein results in dramatic changes to the mitochondrial morphology and significant parasite division and propagation defects. Our results give important insight into the molecular mechanisms regulating mitochondrial morphology.
Summary Dynamin-related proteins (Drps) are involved in diverse processes such as organelle division and vesicle trafficking. The intracellular parasite Toxoplasma gondii possesses three distinct Drps. TgDrpC, whose function remains unresolved, is unusual in that it lacks a conserved GTPase Effector Domain, which is typically required for function. Here, we show that TgDrpC localizes to cytoplasmic puncta; however, in dividing parasites, TgDrpC redistributes to the growing edge of the daughter cells. By conditional knockdown, we determined that loss of TgDrpC stalls division and leads to rapid deterioration of multiple organelles and the IMC. We also show that TgDrpC interacts with proteins that exhibit homology to those involved in vesicle transport, including members of the adaptor complex 2. Two of these proteins, a homolog of the adaptor protein 2 (AP-2) complex subunit alpha-1 and a homolog of the ezrin–radixin–moesin (ERM) family proteins, localize to puncta and associate with the daughter cells. Consistent with the association with vesicle transport proteins, re-distribution of TgDrpC to the IMC during division is dependent on post-Golgi trafficking. Together, these results support that TgDrpC contributes to vesicle trafficking and is critical for stability of parasite organelles and division.
The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites.
Defective interfering particles (DIP) of equine herpesvirus 1 (EHV-1) inhibit standard virus replication and mediate persistent infection. The DIP genome is comprised of only three genes: UL3, UL4, and a hybrid gene composed of portions of the IR4 (EICP22) and UL5 (EICP27) genes. The hybrid gene is important for DIP interference, but the function(s) of the UL3 and UL4 genes are unknown. Here, we show that UL4 is an early gene activated solely by the immediate early protein. The UL4 protein (UL4P) was detected at 4 hours post-infection, was localized throughout the nucleus and cytoplasm, and was not present in purified virions. EHV-1 lacking UL4P expression was infectious and displayed cell tropism and pathogenic properties in the mouse model similar to those of parental and revertant viruses. Reporter assays demonstrated that the UL4P has a broad inhibitory function, suggesting a potential role in establishing and/or maintaining DIP-mediated persistent infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.