Genetic evidence strongly supports the view that Aβ amyloid production is central to the cause of Alzheimer's disease. The kinetics, compartmentation, and form of Aβ and its temporal relation to the neurodegenerative process remain uncertain. The levels of soluble and insoluble Aβ were determined by using western blot techniques, and the findings were assessed in relation to indices of severity of disease. The mean level of soluble Aβ is increased threefold in Alzheimer's disease and correlates highly with markers of disease severity. In contrast, the level of insoluble Aβ (also a measure of total amyloid load) is found only to discriminate Alzheimer's disease from controls, and does not correlate with disease severity or numbers of amyloid plaques. These findings support the concept of several interacting pools of Aβ, that is, a large relatively static insoluble pool that is derived from a constantly turning over smaller soluble pool. The latter may exist in both intracellular and extracellular compartments, and contain the basic forms of Aβ that cause neurodegeneration. Reducing the levels of these soluble Aβ species by threefold to levels found in normal controls might prove to be a goal of future therapeutic intervention.
Inhibition of neocortical beta-amyloid (Abeta) accumulation may be essential in an effective therapeutic intervention for Alzheimer's disease (AD). Cu and Zn are enriched in Abeta deposits in AD, which are solubilized by Cu/Zn-selective chelators in vitro. Here we report a 49% decrease in brain Abeta deposition (-375 microg/g wet weight, p = 0.0001) in a blinded study of APP2576 transgenic mice treated orally for 9 weeks with clioquinol, an antibiotic and bioavailable Cu/Zn chelator. This was accompanied by a modest increase in soluble Abeta (1.45% of total cerebral Abeta); APP, synaptophysin, and GFAP levels were unaffected. General health and body weight parameters were significantly more stable in the treated animals. These results support targeting the interactions of Cu and Zn with Abeta as a novel therapy for the prevention and treatment of AD.
2؉ or Zn 2؉ to A in a negatively charged lipid environment caused a conformational change from -sheet to ␣-helix, accompanied by peptide oligomerization and membrane penetration. These results suggest that metal binding to A generated an allosterically ordered membrane-penetrating oligomer linked by superoxide dismutase-like bridging histidine residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.