Caridean shrimps are an integral component of lowland river ecosystems in south-eastern Australia, but their distributions may be affected by flow alteration. Monthly shrimp samples were collected from slackwaters in three hydrologically distinct sections of the heavily regulated Campaspe River and the less regulated Broken River for three consecutive years. The distributions of Paratya australiensis, Caridina mccullochi and Macrobrachium australiense, along with their life history in river sections with different hydrology are outlined. Paratya australiensis and M. australiense occurred in all sections, but C. mccullochi was absent from sections of the Campaspe River that received irrigation flows during summer/autumn. Shrimp larvae were most abundant in summer (December–February) and juvenile recruitment continued through to mid autumn (April). Breeding and recruitment of P. australiensis occurred for longer than other shrimps. Apart from large adult and berried M. australiense, all life stages of shrimps commonly occurred in slackwaters, particularly the larval and juvenile stages. Irrigation flows in summer/autumn probably adversely affect the size, extent and arrangement of slackwaters, at a time when they may be critical habitats for C. mccullochi larval development and recruitment. Dams and weirs in the Campaspe River may have influenced shrimp abundance and the timing of breeding.
The sexcombs were amputated from males of three strains of Drosophila melanogaster and one strain of D. simulans in order to assess the importance of these structures in the sexual behavior of these species. In D. melanogaster the sexcombs are important in attempts to copulate with the female. Their removal delays copulation but does not suppress it entirely. Other aspects of courtship are not influenced by removal of the sexcombs. Strain differences in quanitative aspects of courtship were found, and also in the insemination rates of females by males without sexcombs. The present evidence suggests that the sexcombs are primarily structures adapted to grasping the female securely during the act of intromission.
Covalent functionalization of graphene offers opportunities for tailoring its properties and is an unavoidable consequence of some graphene synthesis techniques. However, the changes induced by the functionalization are not well understood. By using atomic sources to control the extent of the oxygen and nitrogen functionalization, we studied the evolution in the structure and properties at the atomic scale. Atomic oxygen reversibly introduces epoxide groups whilst, under similar conditions, atomic nitrogen irreversibly creates diverse functionalities including substitutional, pyridinic, and pyrrolic nitrogen. Atomic oxygen leaves the Fermi energy at the Dirac point (i.e., undoped), whilst atomic nitrogen results in a net n-doping; however, the experimental results are consistent with the dominant electronic effect for both being a transition from delocalized to localized states, and hence the loss of the signature electronic structure of graphene.
The dynamic nature of habitat patches in rivers is driven primarily by flow regime. Altered hydrology, through river regulation, can limit the size and distribution of slackwater patches; important areas for the development of young fish and for shrimp in lowland rivers. Between late October 2002 and late January 2003, we investigated responses of fish, shrimp and their potential prey to the experimental creation of slackwaters and, conversely, to the experimental creation of flowing patches, by diverting water away from flowing patches and into slackwater patches, respectively. A pre-experimental survey indicated that slackwaters contained many more fish than flowing patches, and fish larvae were flushed out of slackwaters during the construction of flowing patches. Creation of slackwaters resulted in increased abundance of fish and shrimp, with the opposite occurring when slackwaters were changed into flowing patches. Converting slackwaters into flowing patches, and vice versa, altered the species composition of zooplankton and microbenthic assemblages but did not change their densities. Thus, standing crop of potential prey alone could not explain the differences in fish or shrimp abundance found between patch types. We hypothesize that slackwaters primarily act as refuges from current and provide energetic advantages to the young stages of fish and to shrimp. River regulation has the potential to affect the recruitment success of fish and shrimp by affecting the size, arrangement and availability of slackwater patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.