The sudden infant death syndrome (SIDS) is the sudden death of an infant under one year of age that is typically associated with sleep and that remains unexplained after a complete autopsy and death scene investigation. A leading hypothesis about its pathogenesis is that many cases result from defects in brainstem-mediated protective responses to homeostatic stressors occurring during sleep in a critical developmental period. Here we review the evidence for the brainstem hypothesis in SIDS with a focus upon abnormalities related to the neurotransmitter serotonin in the medulla oblongata, as these are the most robust pathologic findings to date. In this context, we synthesize the human autopsy data with genetic, whole-animal, and cellular data concerning the function and development of the medullary serotonergic system. These emerging data suggest an important underlying mechanism in SIDS that may help lead to identification of infants at risk and specific interventions to prevent death.
Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
The respiratory modulation of the lumbar sympathetic nerve discharge (LSND) was examined in halothane-anesthetized, paralyzed, and vagotomized rats by means of phrenic nerve discharge (PND)-triggered histograms. The respiratory modulation was 1) proportional to PND amplitude during chemoreceptor activation with CO2 and 2) reduced at elevated arterial pressure. Bilateral injections of bicuculline [gamma-aminobutyric acid (GABA)A receptor antagonist, n = 5] into the rostral ventrolateral medulla (RVLM), but not into medullary raphe, reversibly increased mean arterial pressure (MAP) and resting LSND, decreased the baroreflex, reduced PND amplitude and central respiratory rate, and greatly magnified the respiratory modulation of LSND. Injections of strychnine (glycine receptor antagonist, n = 5) or phaclofen (GABAB receptor antagonist, n = 2) into RVLM were without effect. Injections of kynurenic acid (excitatory amino acid receptor antagonist) into RVLM (n = 8), but not raphe (n = 3), reduced PND amplitude, increased central respiratory rate, reduced MAP, elevated resting LSND slightly, and greatly reduced the respiratory modulation of LSND. These data suggest that the rostral tip of the ventrolateral medulla represents a critical link between the central respiratory rhythm generator and the vasomotor outflow. Also, it indicates that the respiratory modulation of SND does not involve a gating of the activity of the medullary neurons that convey baroreceptor information to RVLM sympathoexcitatory neurons.
We conclude that otherwise healthy preterm infants continue to have apneas separated by as many as 8 days before the last apnea before discharge. Conversely, infants with longer apnea intervals often have identifiable risk factors other than apnea of prematurity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.