Objective-Zinc deficiency is common among populations at high risk for sepsis mortality, including elderly, alcoholic, and hospitalized patients. Zinc deficiency causes exaggerated inflammatory responses to endotoxin but has not been evaluated during bacterial sepsis. We hypothesized that subacute zinc deficiency would amplify immune responses and oxidant stress during bacterial sepsis [i.e., cecal ligation and puncture (CLP)] resulting in increased mortality and that acute nutritional repletion of zinc would be beneficial.Design-Prospective, randomized, controlled animal study.
Setting-University medical center research laboratory.Subjects-Adult male C57BL/6 mice.Interventions-Ten-week-old, male, C57BL/6 mice were randomized into three dietary groups: 1) control diet, 2) zinc-deficient diet for 3 weeks, and 3) zinc-deficient diet for 3 weeks followed by oral zinc supplementation for 3 days (n = 35 per diet). Mice were then assigned to receive either CLP or sham operation (n = 15 each per diet). CLP and sham-operated treatment groups were further assigned to a 7-day survival study (n = 10 per treatment per diet) or were evaluated at 24 hours (n = 5 per treatment per diet) for signs of vital organ damage.Measurements and Main Results-Sepsis mortality was significantly increased with zinc deficiency (90% vs. 30% on control diet). Zinc-deficient animals subject to CLP had higher plasma cytokines, more severe organ injury, including increased oxidative tissue damage and cell death, particularly in the lungs and spleen. None of the sham-operated animals died or developed signs of organ damage. Zinc supplementation normalized the inflammatory response, greatly diminished tissue damage, and significantly reduced mortality.Conclusions-Subacute zinc deficiency significantly increases systemic inflammation, organ damage, and mortality in a murine polymicrobial sepsis model. Short-term zinc repletion provides significant, but incomplete protection despite normalization of inflammatory and organ damage indices.The authors have not disclosed any potential conflicts of interest. Sepsis is a major cause of morbidity, mortality, and healthcare costs in hospitalized patients and is the tenth leading cause of death overall in the United States (1). Currently, it is expected that between 20% and 50% of patients who develop sepsis will die despite receiving the current standard of appropriate therapy. The basic cellular and molecular mechanisms accounting for sepsis-related morbidity and mortality remain poorly understood. However, a number of host factors, including immunosuppression, advanced age, chronic alcoholism, and poor nutritional status, are known to increase sepsis mortality (2,3).
NIH Public AccessZinc is an essential dietary micronutrient with beneficial functions that facilitate cytoprotection, improved wound healing, and tissue repair (4). Humans, in response to sepsis or endotoxin administration, experience a transient decrease in plasma zinc levels without a concomitant loss of whole body zinc content (5). ...