We examined the effects of total global ischemia on cerebral arteriolar responses to N-methyl-D-aspartate (NMDA) in anesthetized newborn pigs. Arteriolar responses to 10(-4) M NMDA were determined before and after 10 to 20 min of ischemia caused by increasing intracranial pressure. Before ischemia, NMDA dilated arterioles by 30 +/- 5% (baseline = 88 +/- 2 microns; n = 6). However, after 10 min of ischemia, arteriolar dilation was reduced to 10 +/- 3% at 1 h (P < 0.05). At 2 and 4 h, NMDA-induced dilation was not different from preischemia values. Twenty minutes of ischemia had similar effects. Coadministration of 100 U/ml of superoxide dismutase did not restore arteriolar dilation to NMDA at 1 h after ischemia. Sodium nitroprusside dilated by 14 +/- 3 and 40 +/- 5% at 10(-6) and 10(-5) M before ischemia, respectively, and arteriolar responsiveness was not changed by ischemia (n = 6). Cortical nitric oxide synthase (NOS) activity, measured by the in vitro conversion of L-[14C]arginine to L-[14C]citrulline, was unaffected by ischemia (n = 12). We conclude that decreases in cerebral arteriolar responsiveness to NMDA are not due to impairment of NOS activity, enhanced degradation or chelation of nitric oxide (NO), or reduced vascular smooth muscle responsiveness to NO.
Short-term severe hypoxic hypoxia and reventilation impair the NMDA-induced dilatation of pial arterioles. Respiratory acidosis alone does not modify pial arteriolar reactivity to NMDA. The reduced responsiveness of the cerebral blood vessels to NMDA caused by hypoxia appears to be due to action of oxygen radicals.
The interaction between ATP-sensitive K+ channels (KATP) and nitric oxide (NO) was studied in pial arterioles of piglets. We examined the effects of N omega-nitro-L-arginine methyl ester (L-NAME), a general inhibitor of nitric oxide synthase (NOS), and 7-nitroindazole (7-NI), a selective inhibitor of neuronal NOS, on aprikalim-induced cerebral vasodilation. Topically applied, aprikalim, a selective activator of KATP, dilated arterioles by 11 +/- 7% at 10(-8) M and 17 +/- 6% at 10(-6) M. After L-NAME treatment (15 mg/kg, i.v.), the response was reduced (4 +/- 4% and 12 +/- 7%, respectively; n = 8, p < 0.05). Administration of 7-NI (50 mg/kg, i.p.) did not change pial arteriolar responsiveness to aprikalim. However, both L-NAME and 7-NI reduced the vasodilator responses to 10(-4) M N-methyl-D-aspartate (NMDA) (by 73% and by 36%, respectively). Furthermore, 7-NI treatment abolished the glutamate-induced dilatation of pial arterioles. Administration of L-NAME reduced the NOS activity in the cerebral cortex by 88%, whereas the reduction after the 7-NI treatment was 44%. Pre-treatment and coadministration of 10(-5) M glibenclaminde, a specific inhibitor of KATP or L-NAME administration, did not change the dilatory response to sodium nitroprusside. We conclude that NO may be involved in aprikalim-induced dilation of pial arterioles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.