Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system (CNS) characterized by a wide range of clinical signs 1 . The location of lesions in the CNS is variable and is a crucial determinant of clinical outcome. Multiple sclerosis is believed to be mediated by myelinspecific T cells, but the mechanisms that determine where T cells initiate inflammation are unknown. Differences in lesion distribution have been linked to the HLA complex, suggesting that T cell specificity influences sites of inflammation2. We demonstrate that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (T H 17) to T helper type 1 (T H 1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes. Notably, the T H 17:T H 1 ratio of infiltrating T cells determines where inflammation occurs in the CNS. Myelin-specific T cells infiltrate the meninges throughout the CNS, regardless of the T H 17:T H 1 ratio. However, T cell infiltration and inflammation in the brain parenchyma occurs only when T H 17 cells outnumber T H 1 cells and trigger a disproportionate increase in interleukin-17 expression in the brain. In contrast, T cells showing a wide range of T H 17:T H 1 ratios induce spinal cord parenchymal inflammation. These findings reveal critical differences in the regulation of inflammation in the brain and spinal cord.Experimental autoimmune encephalomyelitis (EAE) is an animal model that shows many similarities to multiple sclerosis3. However, rodent EAE differs from multiple sclerosis by manifesting as ascending flaccid paralysis, reflecting unexplained preferential targeting of inflammation to the spinal cord (described as classic EAE). In a small number of antigenspecific models, brain inflammation occurs (described as atypical EAE)4 -8. Interferon-γ (IFN-γ) deficiency also causes certain myelin-specific T cells to preferentially induce brain
Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME). Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming TAM populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, FcγRIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.
Successful immunotherapy of cancer is becoming a reality aided by the realization that macrophages play an important role in the growth or regression of tumors. Specifically, M2/repair-type macrophages predominate in human cancers and produce growth-promoting molecules that actively stimulate tumor growth in much the same way they help wounds heal. However, modulating M2/repair-type macrophages to M1/kill-type can slow or stop cancer growth. The effects involve direct activity of M1 kill-type as well as the ability of M1-type macrophages to stimulate Th1-type cytotoxic T cells and other effector cells. Macrophage responses can also predict cancer susceptibility; individuals with a high M1/kill to M2/repair ratio are less prone. That macrophages/innate immunity can be modulated to play a central role in directly or indirectly combating cancer is a breakthrough that seems likely to finally make successful immunotherapy of cancer a reality. Cancer Res; 76(3); 513–6. ©2016 AACR.
BackgroundMultiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model.MethodsCD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery.ResultsThe engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs.ConclusionCNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.