[1] Mesoscale convective systems (MCSs) have regions of both convective and stratiform precipitation, and they develop mesoscale circulations as they mature. The upward motion takes the form of a deep-layer ascent drawn into the MCS in response to the latent heating and cooling in the convective region. The ascending layer overturns as it rises but overall retains a coherent layer structure. A middle level layer of inflow enters the stratiform region of the MCS from a direction determined by the large-scale flow and descends in response to diabatic cooling at middle-to-low levels. A middle level mesoscale convective vortex (MCV) develops in the stratiform region, prolongs the MCS, and may contribute to tropical cyclone development. The propagation of an MCS may have a discrete component but may further be influenced by waves and disturbances generated both in response to the MCS and external to the MCS. Waves of a larger scale may affect the propagation velocity by phase locking with the MCS in a cooperative mode. The horizontal scale of an MCS may be limited either by a balance between the formation rate of convective precipitation and dissipation of stratiform precipitation or by the Rossby radius of the MCV. The vertical redistribution of momentum by an MCS depends on the size of the stratiform region, while the net vertical profile of heating of the largescale environment depends on the amount of stratiform rain. Regional variability of the stratiform rain from MCSs affects the large-scale circulation's response to MCS heating.
It was once generally thought that stratiform precipitation was something occurring primarily, if not exclusively, in middle latitudes-in baroclinic cyclones and fronts. Early radar observations in the Tropics, however, showed large radar echoes composed of convective rain alongside stratiform precipitation, with the stratiform echoes covering great areas and accounting for a large portion of the tropical rainfall. These observations seemed paradoxical, since stratiform precipitation should not have been occurring in the Tropics, where baroclinic cyclones do not occur. Instead it was falling from convection-generated clouds, generally thought to be too violent to be compatible with the layered, gently settling behavior of stratiform precipitation. In meteorology, convection is a dynamic concept; specifically, it is the rapid, efficient, vigorous overturning of the atmosphere required to neutralize an unstable vertical distribution of moist static energy. Most clouds in the Tropics are convection-generated cumulonimbus. These cumulonimbus clouds contain an evolving pattern of newer and older precipitation. The young portions of the cumulonimbus are too violent to produce stratiform precipitation. In young, vigorous convective regions of the cumulonimbus, precipitation particles increase their mass by collection of cloud water, and the particles fall out in heavy showers, which appear on radar as vertically oriented convective "cells." In regions of older convection, however, the vertical air motions are generally weaker, and the precipitation particles drift downward, with the particles increasing their mass by vapor diffusion. In these regions the radar echoes are stratiform, and typically these echoes occur adjacent to regions of younger convective showers. Thus, the stratiform and convective precipitation both occur within the same complex of convection-generated cumulonimbus cloud. The feedbacks of the apparent heat source and moisture sink of tropical cumulonimbus convection to the large-scale dynamics of the atmosphere are distinctly separable by precipitation region. The part of the atmospheric response deriving from the areas of young, vigorous convective cells is two layered, with air converging into the active convection at low levels and diverging aloft. The older, weaker intermediary and stratiform precipitation areas induce a three-layered response, in which environmental air converges into the weak precipitation area at midlevels and diverges from it at lower and upper levels. If global precipitation data, such as that to be provided by the Tropical Rainfall Measuring Mission, are to be used to validate the heating patterns predicted by climate and general circulation models, algorithms must be applied to the precipitation data that will identify the two principal modes of heating, by separating the convective component of the precipitation from the remainder.
[1] Precipitation over and near mountains is not caused by topography but, rather, occurs when storms of a type that can occur anywhere (deep convection, fronts, tropical cyclones) form near or move over complex terrain. Deep convective systems occurring near mountains are affected by channeling of airflow near mountains, capping of moist boundary layers by flow subsiding from higher terrain, and triggering to break the cap when low-level flow encounters hills near the bases of major mountain ranges. Mesoscale convective systems are triggered by nocturnal downslope flows and by diurnally triggered disturbances propagating away from mountain ranges. The stratiform regions of mesoscale convective systems are enhanced by upslope flow when they move over mountains. In frontal cloud systems, the poleward flow of warm-sector air ahead of the system may rise easily over terrain, and a maximum of precipitating cloud occurs over the first rise of terrain, and rainfall is maximum on ridges and minimum in valleys. If the low-level air ahead of the system is stable, blocking or damming occurs. Shear between a blocked layer and unblocked moist air above favors turbulent overturning, which can accelerate precipitation fallout. In tropical cyclones, the tangential winds encountering a mountain range produce a gravity wave response and greatly enhanced upslope flow. Depending on the height of the mountain, the maximum rain may occur on either the windward or leeward side. When the capped boundary layer of the eye of a tropical cyclone passes over a mountain, the cap may be broken with intense convection resulting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.