There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
An electrochemical galvanostatic intermittent titration technique (GITT) is described which combines both transient and steady‐state measurements to obtain kinetic properties of solid mixed‐conducting electrodes, as well as thermodynamic data. The derivation of quantities such as the chemical and component diffusion coefficients, the partial conductivity, the mobility, the thermodynamic enhancement factor, and the parabolic rate constant as a function of stoichiometry is presented. A description of the factors governing the equilibration of composition gradients in such phases is included. The technique is applied to the determination of the kinetic parameters of the compound
“Li3normalSb,”
which has a narrow composition range. For
Li2.9994normalSb
the chemical diffusion coefficient is
2×10−5 cm2 sec−1
at 360°C. This value is quite high, due to a large thermodynamic enhancement factor of
1.3×104
. The lithium component diffusion coefficient is comparatively small at this composition,
1.5×10−9 cm2 sec−1
. The partial conductivity and electrical mobility of lithium are
1.5×10−4 Ω−1 cm−1
and
3×10−8 cm2 V−1 sec−1
, respectively, at the same stoichiometry and temperature. Because of the very large values of the chemical diffusion coefficient and the fact that 3 moles of lithium can react per mole of antimony, this system may be of interest for use in new types of secondary batteries.
The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology. (1, 2) Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid.
The concept of a novel all‐solid composite electrode is presented. One example of such a composite contains a finely dispersed reactant,
LiynormalSi
, in a solid mixed‐conducting matrix,
Li2.6normalSn
. Repeated charging and discharging of such electrodes without appreciable loss of capacity has been demonstrated. The polarization is found to be comparable to values typical of highly porous electrode systems in molten salt electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.