Abstract. As limb mesenchymal cells differentiate into chondrocytes, they initiate the synthesis of type II collagen and cease synthesizing type I collagen. Changes in the cytoplasmic levels of type I and type II collagen mRNAs during the course of limb chondrogenesis in vivo and in vitro were examined using cloned cDNA probes. A striking increase in cytoplasmic type II collagen m R N A occurs coincident with the crucial condensation stage of chondrogenesis in vitro, in which prechondrogenic mesenchymal cells become closely juxtaposed before depositing a cartilage matrix. Thereafter, a continuous and progressive increase in the accumulation of cytoplasmic type II coUagen m R N A occurs which parallels the progressive accumulation of cartilage matrix by ceils. The onset of overt chondrogenesis, however, does not involve activation of the transcription of the type II collagen gene. Low levels of type II collagen m R N A are present in the cytoplasm of prechondrogenic mesenchymal cells at the earliest stages of limb development, well before the accumulation of detectable levels of type II collagen. Type I collagen gene expression during chondrogenesis is regulated, at least in part, at the translational level. Type I collagen mRNAs are present in the cytoplasm of differentiated chondrocytes, which have ceased synthesizing detectable amounts of type I collagen. T HE onset of cartilage differentiation in the developinglimb is characterized by a transient cellular condensation or aggregation process in which prechondrogenic mesenchymal cells become closely juxtaposed to one another before initiating cartilage matrix deposition. During this process, a cell-cell interaction, cell shape change, or some other event occurs which is necessary to trigger the chondrogenic differentiation of the cells (15). The critical condensation process may be initiated, at least in part, by a progressive decrease in the accumulation of extracellular hyaluronate (20,35). Fibronectin and type I collagen have been implicated in the cell-cell interaction occurring during condensation (7, 21, 34). Prostaglandin-mediated elevations in cAMP levels during condensation are involved in regulating chondrogenesis (3, 6, 11, 14, 16-18, 32, 33). A change in the shape of the cells from a flattened mesenchymal morphology to a rounded configuration also plays an important role in the process (2, 41).Although considerable insight has been gained into the extracellular influences and intracellular regulatory molecules that are involved in regulating limb chondrogenesis, virtually nothing is known about the molecular mechanisms by which these factors directly influence the changes in gene activity that occur during cartilage differentiation. Prechondrogenic limb mesenchymal cells synthesize type I collagen (36). As the cells differentiate into chondrocytes, they initiate the synthesis of cartilage-characteristic type II collagen and cease synthesizing type I collagen (36). Thus the conversion of mesenchymal chondrogenic progenitor cells into chondrocytes i...
The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.
A partial cDNA that encodes a newly discovered member of the syndecan family of integral membrane proteoglycans, which we have termed syndecan 3, has been isolated from an embryonic chicken limb bud cDNA library. Syndecan 3 is distinct from but structurally related to syndecan and fibroglycan, two previously characterized members of this family of membrane-intercalated proteoglycans. Syndecan 3 contains a cytoplasmic domain potentially associated with the cytoskeleton that is 85% identical in amino acid sequence to the cytoplasmic domain of syndecan. Syndecan 3 also possesses a hydrophobic transmembrane domain and an extracellular domain containing several clustered potential glycosaminoglycan attachment sites. Like syndecan, the ectodomain of syndecan 3 has a single dibasic protease-susceptible site adjacent to the transmembrane domain, which might be involved in shedding the ectodomain from the cell surface. A striking feature of syndecan 3 is an extensive (182 amino acid) threonine, serine, and proline (T+S+P)-rich domain that closely resembles T+S+P-rich regions in several mucin-like proteins in which O-linked oligosaccharides are bound to the threonine and serine residues. Syndecan 3 is expressed in high amounts during a critical phase of chicken limb chondrogenesis in which limb mesenchymal cells condense, round up, and interact with one another before depositing a cartilage matrix. The multiple functional domains of syndecan 3 provide potential sites for mediating the adhesive cell-matrix interactions and cytoskeletal reorganization involved in this critical condensation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.