The theoretical underpinnings of photoacoustic ultrasound (PAUS) reconstruction tomography are presented. A formal relationship between PAUS signals and the heterogeneous distribution of optical absorption within the object being investigated is developed. Based on this theory, a reconstruction approach, analogous to that used in x-ray computed tomography, is suggested. Initial experimental results suggest that this approach produces "reasonable" reconstructions for absorbers distributed within a narrow plane embedded within a highly scattering medium.
We have constructed a thermoacoustic computed tomography scanner for imaging soft tissue in the human body. Thermoacoustic signals are induced in soft tissue by irradiation with 434 MHz rf energy. The thermoacoustic signals are detected by an array of transducers mounted on a hemispherical bowl. A three-dimensional, filtered backprojection algorithm is used to reconstruct rf absorption patterns within soft tissue. We have demonstrated soft tissue differentiation sufficient to delineate the normal internal structures of an excised lamb kidney using safe levels of rf radiation.
Purpose:The authors report a noninvasive technique and instrumentation for visualizing vasculature in the breast in three dimensions without using either ionizing radiation or exogenous contrast agents, such as iodine or gadolinium. Vasculature is visualized by virtue of its high hemoglobin content compared to surrounding breast parenchyma. The technique is compatible with dynamic contrast-enhanced studies. Methods: Photoacoustic sonic waves were stimulated in the breast with a pulsed laser operating at 800 nm and a mean exposure of 20 mJ/pulse over an area of ϳ20 cm 2 . These waves were subsequently detected by a hemispherical array of piezoelectric transducers, the temporal signals from which were filtered and backprojected to form three-dimensional images with nearly uniform k-space sampling. Results: Three-dimensional vascular images of a human volunteer demonstrated a clear visualization of vascular anatomy with submillimeter spatial resolution to a maximum depth of 40 mm using a 24 s image acquisition protocol. Spatial resolution was nearly isotropic and approached 250 m over a 64ϫ 64ϫ 50 mm field of view. Conclusions:The authors have successfully visualized submillimeter breast vasculature to a depth of 40 mm using an illumination intensity that is 32 times less than the maximum permissible exposure according to the American National Standard for Safe Use of Lasers. Clearly, the authors can achieve greater penetration depth in the breast by increasing the intensity and the crosssectional area of the illumination beam. Given the 24 s image acquisition time without contrast agent, dynamic, contrast-enhanced, photoacoustic breast imaging using optically absorbing contrast agents is conceivable in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.