Objectives The aim of the study was to determine if there had been any change in the number of solid-pseudopapillary neoplasms (SPN) cases detected, their evaluation or the management over time. Methods A systematic review of SPN was performed of all articles published in English in PubMed and SCOPUS. Results 2,744 patients with SPN identified in 484 studies published between 1961-2012; 87.8% cases were reported between 2000-2012. 2,408 (87.8%) females and the mean age was 28.5 years (S.D. ± 13.7). The most common symptom was abdominal pain in 63.6% and incidentally detected in 38.1%. There were 2,285 patients who underwent pancreatic resection. The mean tumor size was 8.6 cm (S.D ± 4.3). Follow-up was reported for 1,952 (90.5%) patients, with mean follow-up of 36.1 months (S.D. ± 32.8). Disease-free survival was documented in 1,866 (95.6%) patients with recurrence in 86 (4.4%); median time to recurrence was 50.5 months. Conclusions The number of SPNs reported in the literature has seen a 7-fold increase in the number of cases reported since 2000 compared to before. SPNs continue to be primarily found in young women and present with non-specific symptoms. Surgery remains the mainstay of treatment with an excellent long term prognosis.
A unique mutation in LRP5 is associated with high bone mass in man. Transgenic mice expressing this LRP5 mutation have a similar phenotype with high bone mass and enhanced strength. These results underscore the importance of LRP5 in skeletal regulation and suggest targets for therapies for bone disease.A mutation (G171V) in the low-density lipoprotein receptor related protein 5 (LRP5) has been associated with high bone mass (HBM) in two independent human kindreds. To validate the role of the mutation, several lines of transgenic mice were created expressing either the human LRP5 G171V substitution or the wildtype LRP5 gene in bone. Volumetric bone mineral density (vBMD) analysis by pQCT showed dramatic increases in both total vBMD (30 -55%) and trabecular vBMD (103-250%) of the distal femoral metaphysis and increased cortical size of the femoral diaphysis in mutant G171V transgenics at 5, 9, 17, 26, and 52 weeks of age (p < 0.01 for all). In addition, high-resolution microcomputed tomography (microCT) analysis of the distal femorae and lumbar vertebrae revealed an increase (110 -232%) in trabecular bone volume fraction caused by both increased trabecular number (41-74%) and increased trabecular thickness (34 -46%; p < 0.01 for all) in the mutant G171V mice. The increased bone mass was associated with significant increases in vertebral compressive strength (80 -140%) and the increased cortical size with significant increases in femoral bending strength (50 -130%). There were no differences in osteoclast number at 17 weeks of age. However, compared with littermate controls, the mutant G171V transgenic mice showed an increase in actively mineralizing bone surface, enhanced alkaline phosphatase staining in osteoblasts, and a significant reduction in the number of TUNEL-positive osteoblasts and osteocytes. These results suggest that the increased bone mineral density in mutant G171V mice was caused by increased numbers of active osteoblasts, which could in part be because of their increased functional lifespan. While slight bone anabolic activity was observed from overexpression of the wildtype LRP5 gene, it is clear that the G171V mutation, rather than overexpression of the receptor itself, is primarily responsible for the dramatic HBM bone effects. Together, these findings establish the importance of this novel and unexpected role of a lipoprotein receptor in regulating bone mass and afford a new model to explore LRP5 and its recent association with Wnt signaling in bone biology. (J Bone Miner Res 2003;18:960 -974)
The insertion sequence IS26 plays a key role in disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transposition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This reaction was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high-frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.