To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress–related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.
We developed and validated assessments for total body water (TBW) and extracellular water (ECW) by using two resistance values of a new electric circuit model (CM) (two resistors; a capacitor and an inductor) with or without body mass. Fluid shifts occurring after 40 min of supine rest did not increase the validity of either estimate. CM estimates were valid; r = 0.941 to 0.969, low SE of estimates of 1.15-2.28 kg, nonsignificant mean differences (CM - dilution; %delta = -0.4 to 1.3%) that were close to the expected measurement errors for TBW (+/- 1%) and ECW (+/- 5%), and Bland-Altman pairwise comparisons that showed equivalence between methods. The CM estimates of TBW and ECW had marginally better validity than the previously published bioimpedance models. The advantage of the CM model is its assessments of multiple fluid spaces and that it does not require gender-specific equations. We conclude that CM estimate of TBW is acceptable, whereas further validation is needed before the ECW estimate should be used in a clinical or research setting.
Results from this investigation suggest that supplementation with potassium citrate may decrease the risk of renal stone formation during and immediately after spaceflight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.