Anoikis is defined as apoptosis that is induced by inadequate or inappropriate cell-matrix interactions. It is involved in a wide diversity of tissue-homeostatic, developmental and oncogenic processes. The central problem of anoikis is to understand how integrin-mediated cell adhesion signals control the apoptotic machinery. In particular, the initiation of the caspase cascade in anoikis remains to be explained.
Glucose homeostasis is regulated systemically by hormones such as insulin and glucagon, and at the cellular level by energy status. Glucagon enhances glucose output from the liver during fasting by stimulating the transcription of gluconeogenic genes via the cyclic AMP-inducible factor CREB (CRE binding protein). When cellular ATP levels are low, however, the energy-sensing kinase AMPK inhibits hepatic gluconeogenesis through an unknown mechanism. Here we show that hormonal and energy-sensing pathways converge on the coactivator TORC2 (transducer of regulated CREB activity 2) to modulate glucose output. Sequestered in the cytoplasm under feeding conditions, TORC2 is dephosphorylated and transported to the nucleus where it enhances CREB-dependent transcription in response to fasting stimuli. Conversely, signals that activate AMPK attenuate the gluconeogenic programme by promoting TORC2 phosphorylation and blocking its nuclear accumulation. Individuals with type 2 diabetes often exhibit fasting hyperglycaemia due to elevated gluconeogenesis; compounds that enhance TORC2 phosphorylation may offer therapeutic benefits in this setting.
The incretin hormone GLP1 promotes islet-cell survival via the second messenger cAMP. Here we show that mice deficient in the activity of CREB, caused by expression of a dominant-negative A-CREB transgene in pan-creatic-cells, develop diabetes secondary to-cell apoptosis. Remarkably, A-CREB severely disrupted expression of IRS2, an insulin signaling pathway component that is shown here to be a direct target for CREB action in vivo. As induction of IRS2 by cAMP enhanced activation of the survival kinase Akt in response to insulin and IGF-1, our results demonstrate a novel mechanism by which opposing pathways cooperate in promoting cell survival. Supplemental material is available at http://www.genesdev.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.