Neurodevelopmental changes induced by environmental stress exposure play a significant but poorly defined role in the etiology of schizophrenia. Exposure of pregnant female rats to a series of unpredictable stresses during the final week of pregnancy generates behavioral deficits and molecular changes in the offspring similar to those observed in schizophrenic individuals. We used this rat prenatal stress preparation to investigate social withdrawal behaviors that may have relevance to the negative symptoms of schizophrenia. The cumulative time adult male offspring of stress-exposed pregnant female rats actively interacted with a weight-matched, same-sex peer was decreased approximately 76% relative to non-stress exposed control rats. Prenatal stress exposure also diminished the quality of the social interaction behavior indicative of reduced social drive. Analysis of the oxytocinergic system in the prenatally stressed male rats revealed significantly less oxytocin mRNA in the paraventricular nucleus and increased oxytocin receptor binding in the central amygdala. Moreover, oxytocin, but not vasopressin, administration into the central amygdala reversed the social incompetence of the prenatally stressed rats without increasing behavior in nonstressed control animals. In addition, cross-fostering pups from prenatally stressed mothers to nonstressed mothers failed to improve the social deficit of the prenatally stressed male offspring. Two behavioral assays designed to measure anxiety did not differentiate the prenatally stressed rats from non-stressed controls. These data indicate that prenatal stress may be an etiologically appropriate animal model for some aspects of schizophrenic social withdrawal. Furthermore, unpredictable prenatal stress exposure selectively degrades social interaction behaviors without increasing anxiety measures.
Evidence showing the ectopic re-expression of cell cycle-related proteins in specific vulnerable neuronal populations in Alzheimer disease led us to formulate the hypothesis that neurodegeneration, like cancer, is a disease of inappropriate cell cycle control. To test this notion, we used adenoviral-mediated expression of c-myc and ras oncogenes to drive postmitotic primary cortical neurons into the cell cycle. Cell cycle re-entry in neurons was associated with increased DNA content, as determined using BrdU and DAPI, and the re-expression of cyclin B1, a marker for the G2/M phase of the cell cycle. Importantly, we also found that cell cycle re-entry in primary neurons leads to tau phosphorylation and conformational changes similar to that seen in Alzheimer disease. This study establishes that the cell cycle can be instigated in normally quiescent neuronal cells and results in a phenotype that shares features of degenerative neurons in Alzheimer disease. As such, our neuronal cell model may be extremely valuable for the development of novel therapeutic strategies.
Chronic administration of phencyclidine (PCP) has been advanced as a valid animal model of the social deficit symptoms of schizophrenia. In these studies, the cumulative time that male rats treated once a day for 14 days with PCP actively engaged in social behavior was decreased approximately 75% relative to saline-treated control animals. In addition, these socially impaired rats had an increase in the relative amount of noncontact interactions compared with saline-injected peers. Social behaviors were preferentially affected by PCP treatment because in two anxiety-related behavioral assays, the open field and light/dark emergence tests, there was a failure to differentiate between the PCP-treated rats and saline-injected control rats. Considering the general importance of the neuropeptides oxytocin and vasopressin in male social behaviors, studies of molecular markers related to these neuropeptides were performed. Hypothalamic oxytocin mRNA expression was significantly decreased while oxytocin receptor binding was increased in the central nucleus of the amygdala following chronic PCP treatment. Given the significance of central nucleus of the amygdala in social behavior, oxytocin was infused into the central nucleus of experimental and control male rats, and their postinfusion social interaction and open field behaviors were analyzed. A bilateral infusion of 1 mg of oxytocin into the central amygdala selectively restored the normal quantity and quality of social behavior in chronic PCP-treated male rats without altering open field behaviors. These findings suggest that deficits in the central oxytocinergic system may underlie the social impairment exhibited in this animal model of schizophrenia.
Parental ACE exposures can negatively impact child development in multiple domains, including problem solving, communication, personal-social, and motor skills. Research is needed to elucidate the psychosocial and biological mechanisms of intergenerational risk. This research has implications for the value of parental ACE screening in the context of pediatric primary care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.