Reexamination and study of fossils collected from 3 localities in New Hampshire show the presence of the brachiopods Amiriiigenia and Eofler&naria cf. E. arciiata at 2 of the localities. The evidence suggests a correlation of the containing strata with the Camden chert (Lower Devonian) of Tennessee. All the fossils are from slightly metamorphosed (chlorite zone) strata of the Littleton formation in northern New Hampshire. Fossils from highly metamorphosed (sillimanite zone) rocks correlated with the Littleton formation are determined to be of post-Early Ordovician age. Several thousand feet of unfossiliferous post-Silurian rocks, below the fossiliferous strata (Littleton formation) in the Littleton quadrangle, are present in part of the adjoining Whitefield quadrangle. The absence of these strata in part of the Whitefleld quadrangle may be due to nondeposition or to erosion prior to deposition of strata of Camden age.
Uranium mining and processing had been widespread in Central Asia since the mid-1940s. However, with the establishment of the newly independent states in the 1990s, many of the former uranium mining and processing facilities and their associated wastes (dumps and tailings) were abandoned and have since posed a threat to the environment. The fact that the sites were left behind without proper remediation for a long time has led to the uncontrolled spread of radioactive and toxic contaminants in the environment due to landslides or flooding. Knowledge of the exact location of some waste facilities was lost as a result of social disruptions during the 1990s. In order to assess radiological risks and plan and implement adequate, sustainable, and environmental remediation measures, the radiological situation at the uranium legacy sites must be repeatedly mapped with the best possible accuracy in terms of both sensitivity and spatial resolution. In this paper, we present the experimental use of an unmanned aerial vehicle (UAV) equipped with gamma spectrometry systems as a novel tool for mapping, assessing, and monitoring radioactivity at sites affected by uranium mining and processing and other activities related to enhanced natural radioactivity. Special emphasis is put on the practical conditions of using UAV-based gamma spectrometry in an international context focusing on low- and medium-income countries. Challenges and opportunities of this technology are discussed, and its reliability and robustness under field conditions are critically reviewed. The most promising future application of the technology appears to be the radiological monitoring, institutional control, and quality assurance of legacy sites during and after environmental remediation. One-off administrative and logistical challenges of the technology are outweighed by the significant amount of time and cost saved once a UAV-based gamma spectrometry survey system is set up.
During winter hibernation, bats may become active for a variety of reasons. Such winter activity occurs at or near hibernacula, but the degree to which this activity represents long-distance travel across a wider landscape largely is unstudied. We documented patterns in landscape-wide winter activity across a west-central Indiana study site, providing some new insights into winter flight activity. We deployed acoustic recording devices in areas without any known hibernacula, each night from December through March over three consecutive winters. Twilight temperatures (1 h post-sunset) ranged from −23°C to 21°C across three winters. We recorded 4,392 call files and attributed 89% to a phonic group based on characteristic frequencies. Flight activity was recorded at all stations and during all winter months. Nightly activity mainly was a function of the temperature on that night. We recorded low-phonic bats (most likely big brown bats, Eptesicus fuscus) down to −4°C, but most activity occurred when twilight temperatures were > 0°C. Mid-phonic bat activity (most likely eastern red bats, Lasiurus borealis) occurred when temperatures were > 0°C, with most activity occurring when temperatures were > 5°C. Wind speeds > 6 m/s tended to suppress activity. The duration of inactive periods during cold spells had no effect on activity during subsequent warm nights, indicating no increasing drive for activity following long periods of inactivity. Most activity occurred within a few hours of sunset, regardless of temperature. Little pre-sunset activity was recorded in low-phonic bats, but mid-phonic bats sometimes were active in the hour before sunset. Our results suggest widespread and potentially long-distance travel by bats across our study area during warm periods, but the impetus behind this activity remains unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.