The plasma membrane dopamine transporter (DAT) is responsible for clearing dopamine from the synapse. Cocaine blockade of DAT leads to increased extracellular dopamine, an effect widely considered to be the primary cause of the reinforcing and addictive properties of cocaine. In this study we tested whether these properties are limited to the dopaminergic system in mice lacking DAT. In the absence of DAT, these mice exhibit high levels of extracellular dopamine, but paradoxically still self-administer cocaine. Mapping of the sites of cocaine binding and neuronal activation suggests an involvement of serotonergic brain regions in this response. These results demonstrate that the interaction of cocaine with targets other than DAT, possibly the serotonin transporter, can initiate and sustain cocaine self-administration in these mice.
Cocaine-induced alterations in synaptic glutamate function in nucleus accumbens are thought to mediate drug-related behaviors such as psychomotor sensitization. However, previous studies examined global alterations in randomly selected accumbens neurons regardless of their activation state during cocaine-induced behavior. We recently found that a minority of strongly activated Fos-expressing accumbens neurons are necessary for cocaine-induced psychomotor sensitization while the majority of accumbens neurons are less directly involved. Here, we assessed synaptic alterations in these strongly activated accumbens neurons in c-fos-GFP mice that express a fusion protein of Fos and green fluorescent protein (GFP) in strongly activated neurons and compared these alterations with those in surrounding non-activated neurons. Cocaine sensitization produced higher levels of ‘silent synapses’ that contained functional NMDA receptors and non-functional AMPA receptors in only GFP-positive neurons, 6–11 days after sensitization. Thus unique synaptic alterations are induced in the most strongly activated accumbens neurons that mediate psychomotor sensitization.
The present study compared cocaine-induced hyperlocomotion and cocaine i.v. self-administration in DBA/2J and C57BL/6J mice. In the locomotor activity experiment, these strains were tested for hyperlocomotion after i.p. cocaine injection (0-60.0 mg/kg), using a Digiscan Animal Activity Monitoring System. In the cocaine i.v. self-administration experiment, they were compared for their ability to acquire and maintain cocaine self-administration in operant chambers with levers as the manipulanda. Animals were first trained to respond for food as a reinforcer (condensed milk solution); they were then submitted to surgical i.v. insertion of an in-dwelling catheter, and required to respond for i.v. cocaine (0.25-4.0 mg/kg per injection) as a reinforcer. DBA/2J mice showed significantly higher maximal cocaine-induced hyperlocomotion, more rapid acquisition of cocaine self-administration, and significantly lower rates of cocaine self-administration. Cocaine concentration in the brains of DBA/2J and C57BL/6J mice failed to differ following i.p. injection, suggesting that distribution factors were not involved in the differential responses to cocaine. Although not conclusive, this pattern of effects may suggest that cocaine has greater reinforcing efficacy in DBA/2J mice, confirming genetic make-up as a determinant factor in cocaine taking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.