The majority of breast cancers (90–95%) arise due to mediators distinct from inherited genetic mutations. One major mediator of breast cancer involves chronic inflammation. M1 macrophages are an integral component of chronic inflammation and the breast cancer tumor microenvironment (TME). Previous studies have demonstrated that up to 50% of the breast tumor comprise of tumor-associated macrophages (TAMs) and increased TAM infiltration has been associated with poor patient prognosis. Furthermore, breast cancer associated deaths are predominantly attributed to invasive cancers and metastasis with epithelial-mesenchymal transition (EMT) being implicated. In this study, we investigated the effects of cellular crosstalk between TAMs and breast cancer using an in vitro model system. M1 polarized THP-1 macrophage conditioned media (CM) was generated and used to evaluate cellular and functional changes of breast cancer lines T47D and MCF-7. We observed that T47D and MCF-7 exhibited a partial EMT phenotype in the presence of activated THP-1 CM. Additionally, MCF-7 displayed a significant increase in migratory and invasive properties. We conclude that M1 secretory factors can promote a partial EMT of epithelial-like breast cancer cells. The targeting of M1 macrophages or their secretory components may inhibit EMT and limit the invasive potential of breast cancer.
T. gondii modifies its host cell to suppress its ability to become activated in response to IFN-γ and TNF-α and to develop intracellular antimicrobial effectors including nitric oxide. Mechanisms used by of T. gondii to modulate activation of its infected host cell likely underlies its ability to hijack monocytes and dendritic cells (DC) during infection to disseminate to the brain and CNS where it converts to bradyzoites contained in tissue cysts to establish persistent infection. To identify T. gondii genes important for resistance to the effects of host cell activation we developed an in vitro murine macrophage infection and activation model to identify parasite insertional mutants that have a fitness defect in infected macrophages following activation but normal invasion and replication in naïve macrophages. We identified fourteen independent T. gondii insertional mutants out of over 8000 screened that share a defect in their ability to survive macrophage activation due to macrophage production of reactive nitrogen intermediates (RNIs). These mutants have been designated counter-immune (CIM) mutants. We successfully used one of these mutants to identify a T. gondii cytoplasmic and conoid-associated protein important for parasite resistance to macrophage RNIs. Deletion of the entire gene or just the region encoding the protein in wild type parasites recapitulated the RNI-resistance defect in the CIM mutant confirming the role of the protein in resistance to macrophage RNI.
Clinical studies evaluating targeted BRAFV600E inhibitors in advanced thyroid cancer patients are currently underway. Vemurafenib (BRAFV600E inhibitor) monotherapy has shown promising results thus far, although development of resistance is a clinical challenge. The objective of this study was to characterize development of resistance to BRAFV600E inhibition and to identify targets for effective combination therapy. We created a line of BCPAP papillary thyroid cancer cells resistant to vemurafenib by treating with increasing concentrations of the drug. The resistant BCPAP line was characterized and compared to its sensitive counterpart with respect to signaling molecules thought to be directly related to resistance. Expression and phosphorylation of several critical proteins were analyzed by Western blotting and dimerization was evaluated by immunoprecipitation. Resistance to vemurafenib in BCPAP appeared to be mediated by constitutive overexpression of phospho-ERK and by resistance to inhibition of both phospho-mTOR and phospho-S6 ribosomal protein after vemurafenib treatment. Expression of potential alternative signaling molecule, CRAF, was not increased in the resistant line, although formation of CRAF dimers appeared increased. Expression of membrane receptors HER2 and HER3 was greatly amplified in the resistant cancer cells. Papillary thyroid cancer cells were capable of overcoming targeted BRAFV600E inhibition by rewiring of cell signal pathways in response to prolonged vemurafenib therapy. Our study suggests that in vitro culture of cancer cells may be useful in assessing molecular resistance pathways. Potential therapies in advanced thyroid cancer patients may combine vemurafenib with inhibitors of CRAF, HER2/HER3, ERK, and/or mTOR to delay or abort development of resistance.
BackgroundThyroid cancer is the most common endocrine-related cancer in the United States and its incidence is rising rapidly. Since among various genetic lesions identified in thyroid cancer, the BRAFV600E mutation is found in 50% of papillary thyroid cancers and 25% of anaplastic thyroid cancers, this mutation provides an opportunity for targeted drug therapy. Our laboratory evaluated cellular phenotypic effects in response to treatment with PLX4032, a BRAFV600E-specific inhibitor, in normal BRAF-wild-type thyroid cells and in BRAFV600E-positive papillary thyroid cancer cells.MethodsNormal BRAF-wild-type thyroid cells and BRAFV600E-mutated papillary thyroid cancer cells were subjected to proliferation assays and analyzed for cell death by immunofluorescence. Cell cycle status was determined using an EdU uptake assay followed by laser scanning cytometry. In addition, expression of proteins within the MAPK signal transduction pathway was analyzed by Western blot.ResultsPLX4032 has potent anti-proliferative effects selectively in BRAF-mutated thyroid cancer cells. These effects appear to be mediated by the drug’s activity of inhibiting phosphorylation of signaling molecules downstream of BRAF within the pro-survival MAPK pathway. Interestingly, PLX4032 promotes the phosphorylation of these signaling molecules in BRAF-wild-type thyroid cells.ConclusionsThese findings support further evaluation of combinational therapy that includes BRAFV600E inhibitors in thyroid cancer patients harboring the BRAFV600E mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.