Urban systems design arises from disparate current planning approaches (urban design, Planning Support Systems, and community engagement), compounded by the reemergence of rational planning methods from new technology (Internet of Things (IoT), metric based analysis, and big data). The proposed methods join social considerations (Human Well-Being), environmental needs (Sustainability), climate change and disaster mitigation (Resilience), and prosperity (Economics) as the four foundational pillars. Urban systems design integrates planning methodologies to systematically tackle urban challenges, using IoT and rational methods, while human beings form the core of all analysis and objectives. Our approach utilizes an iterative three-phase development loop to contextualize, evaluate, plan and design scenarios for the specific needs of communities. An equal emphasis is placed on feedback loops through analysis and design, to achieve the end goal of building smart communities.
A new age of mobility is upon us, and the way we analyze our transportation network and future development projects must move into this new age. Large-scale changes to our transportation system are coming with the introduction of disruptive technologies and services like autonomous vehicles, electric vertical takeoff and landing (eVTOL) air taxis, and Mobility-as-a-Service (MaaS) platforms. Transportation modeling has long been used as a tool to measure the impact, positively or negatively, of a proposed network change or new land development. Transportation modeling has become more complex as it has shifted from the traditional four-step model, but it is still used in new development traffic impact studies, activity-based models, and most recently, agent-based models like those of MATSim. This increased complexity has made way for more comprehensive measures of effectiveness that can be useful in planning and design. However, there tends to be a gap between design occurring, tool utilization, and actual implementation of new technologies and big data effectively into these proven modeling and simulation platforms. Among five specific issues in travel forecasting, modeling is used as a reactive tool instead of a proactive tool with the purpose of influencing design and planning. Urban Systems Design has the potential to fill these gaps in methodology, which are occurring together in the modeling, planning, and design professions. An example of these new methodologies is presented using the city of Urawa Misono in metropolitan Tokyo, Japan, as a case study. As technology becomes more enhanced, so shall our methodologies, as we attempt to enact system changes in a more complex way. The feedback loop of analysis and design within Urban Systems Design methodologies could produce greater outcomes for the transportation network, for new development, and increase both the mobility and accessibility for the users of our urban networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.