Heme is an iron containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was carried out to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both Progesterone Receptor Membrane Component 1 (PGRMC1) and Progesterone Receptor Membrane Component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in hemoglobinization relative to untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1 in vitro measured FECH activity decreased in a dose dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.
Rapid and accurate heme quantitation in the research lab has become more desirable as the crucial role that intracellular hemoproteins play in metabolism continues to emerge. Here, the time-honored approaches of pyridine hemochromogen and fluorescence heme assays are compared with direct absorbance-based technologies using the CLARiTY spectrophotometer. All samples tested with these methods were rich in hemoglobin-associated heme, including buffered hemoglobin standards, whole blood from mice, and murine erythroleukemia (MEL) and K562 cells. While the pyridine hemochromogen assay demonstrated the greatest linear range of heme detection, all 3 methods demonstrated similar analytical sensitivities and normalized limits of quantitation of ∼1 µM. Surprisingly, the fluorescence assay was only shown to be distinct in its ability to quantitate extremely small samples. Using the CLARiTY system in combination with pyridine hemochromogen and cell count data, a common hemoglobin extinction coefficient for blood and differentiating MEL and K562 cells of 0.46 µM-1 cm-1 was derived. This value was applied to supplemental experiments designed to measure MEL cell hemoglobinization in response to the addition or removal of factors previously shown to affect heme biosynthesis (e.g., L-glutamine, iron).
Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae . Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.
Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied, and all the biosynthetic enzymes have been structurally characterized to varying extents. Nevertheless, our understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Herein we investigate the molecular organization as well as the catalytic and structural features of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses reveal dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity and results in accumulation of highly reactive and potentially toxic tetrapyrrole precursors that may result in oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. Our data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.