Gated31P-nuclear magnetic resonance followed the metabolic fluctuation in rat gastrocnemius muscle during a contraction cycle. Within 16 ms after stimulation, the phosphocreatine (PCr) level drops 11.3% from its reference state. The PCr minimum corresponds closely to the time of maximum force contraction. Pi increases stoichiometrically, while ATP remains constant. During a twitch, PCr hydrolysis produces 3.1 μmol ATP/g tissue, which is substantially higher than the reported 0.3 μmol ATP ⋅ twitch−1 ⋅ g tissue−1 derived from steady-state experiments. The results reveal that a substantial energy fluctuation accompanies a muscle twitch.
It has been well documented that ischemic preconditioning limits ischemic-reperfusion injury in cardiac muscle, but the ability of ischemic preconditioning to limit skeletal muscle injury is less clear. Previous reports have emphasized the beneficial effects of ischemic preconditioning on skeletal muscle structure and capillary perfusion but have not evaluated muscle function. We investigated the morphologic and functional consequences of ischemic preconditioning, followed by a 2-hour period of tourniquet ischemia on muscles in the rat hindlimb. The 2-hour ischemia was imposed without preconditioning, or was preceded by three brief (10 minutes on/10 minutes off) preischemic conditioning intervals. We compared muscle morphology, isometric contractile function, and muscle fatigue properties in predominantly fast-twitch, tibialis anterior muscles 3 (n = 8) and 7 (n = 8) days after ischemia-reperfusion. Two hours of ischemia, followed by reperfusion, results in a 20 percent reduction of muscle mass (p < 0.05) and a 33 percent reduction in tetanic tension (p < 0.05) when compared with controls (n = 8) at 3 days. The same protocol, when preceded by ischemic preconditioning, results in similar decreases in muscle mass and contractile function. Neuromuscular transmission was also impaired in both ischemic groups 7 days after ischemia. Nerve-evoked maximum tetanic tension was 69 percent of the tension produced by direct muscle stimulation in the ischemia group and 65 percent of direct tension in the ischemic preconditioning/ischemia group. In summary, ischemic preconditioning, using the same protocol reported to be effective in limiting infarct size in porcine muscle, had no significant benefit in limiting injury or improving recovery in the ischemic rat tibialis anterior. The value of ischemic preconditioning in reducing imposed ischemic-reperfusion-induced functional deficits in skeletal muscle remains to be demonstrated.
This report focuses on the myotonic (mto) mouse, an autosomal recessive neuromuscular mutant first described in 1982. Studies in vivo confirmed the presence of hindlimb rigidity during walking and typical myotonic electromyographic (EMG) discharges that persisted after nerve transection and complete neuromuscular blockade. Studies of the contractility of mto muscles in vitro revealed reduced peak isometric tetanic tension and greatly prolonged relaxation times. Tubocurarine did not affect tension parameters, but did antagonize the delayed relaxation in vitro. On the basis of EMG studies alone this mutant can accurately be described as myotonic. Reduction of the contractile abnormalities by tubocurarine in vitro, however, poses further questions regarding the nature of the disorder. Although the more familiar dystrophic mouse (dy/dy) has been termed "myotonic" by some, the new mto mutant differs from it in all aspects examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.