Reproductive allocation at one age is predicted to reduce the probability of surviving to the next year or to lead to a decrease in future reproduction. This prediction assumes that reproduction involves fitness costs. However, few empirical studies have assessed whether such costs may vary with the age at primiparity or might be overridden by heterogeneities in individual quality. We used data from 35 years' monitoring of individually marked semi-domestic reindeer females to investigate fitness costs of reproduction. Using multi-state statistical models, we compared age-specific survival and reproduction among four reproductive states (never reproduced, experienced non-breeders, reproduced but did not wean offspring, and reproduced and weaned offspring) and among contrasted age at primiparity. We assessed whether reproductive costs occurred, resulting in a trade-off between current reproduction and future reproduction or survival, and whether early maturation was costly or rather reflected differences in individual quality of survival and reproduction capabilities. We did not find any evidence for fitness costs of reproduction in female reindeer. We found no cost of gestation and lactation in terms of future reproduction and survival. Conversely, successful breeders had higher survival and subsequent reproductive success than experienced non-breeders and unsuccessful breeders, independently of the age at primiparity. Moreover, it was beneficial to mature earlier, especially for females that successfully weaned their first offspring. Successful females at early primiparity remained successful throughout their life, clearly supporting the existence of marked among-female differences in quality. The weaning success peaked for multiparous females and was lower for first-time breeders, indicating a positive effect of experience on reproductive performance. Our findings emphasize an overwhelming importance of individual quality and experience to account for observed variation in survival and reproductive patterns of female reindeer that override trade-offs between current reproduction and future performance, at least in the absence of harsh winters.
The relative importance of winter harshness and early summer foraging conditions are of prime interest when assessing the effect of global warming on Arctic and mountainous ecosystems. We explored how climate and vegetation onset (satellite-derived normalized difference vegetation index data) determined individual performance in three reindeer populations (data on 27 814 calves sampled over 11 years). Snow conditions, spring temperatures and topography were the main determinants of the onset of the vegetation. An earlier onset positively affected the body mass of calves born the following autumn, while there was no significant direct negative impact of the previous winter. This study underlines the major impact of winter and spring climatic conditions, determining the spring and summer food availability, and the subsequent growth of calves among alpine herbivores.
Longevity is the main factor influencing individual fitness of long-lived, iteroparous species. Theories of life history evolution suggest this is because increased longevity allows individuals to (i) have more breeding attempts (time component), (ii) accumulate experience so as to become better able to rear offspring (experience component) or (iii) because individuals reaching old age have above-average quality (quality component). We assess empirically the relative influences of time, experience and quality on the relationship between longevity and individual fitness among female reindeer. Fitness increased with longevity due to all three processes. All females increased in success with age up to their penultimate year of life (experience component), the success of the terminal-breeding occasion was strongly dependent on longevity. Longlived females had more successful breeding attempts during their life (time component), and had higher reproductive success at all ages, especially during the last year of life (individual quality component) than short-lived females. Our study reveals a more complex relationship between longevity and fitness in large mammals than the simple increase of the number of reproductive attempts when living longer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.