One of the most important factors in hand-arm system research is the information about hand grip force and pressing force on a tool handle. This article focuses on an alternative method to measure grip force. For grip force, one of the most popular solutions is a special handle with force sensors. However, when we want to use it with regular hand tool like e.g. a drill, it seems to be uncomfortable because we must interfere in handle construction. A solution proposed in this article is based on technique for evaluating and recording the electrical activity produced by muscles, electromyography (EMG). It has been assumed that EMG signal will be proportional to muscle tension responsible for palm grip. This solution have one signicant advantage when comparing to special handle. It can be used with regular tool without interfering in the handle. Measurement presented in this article have been carried out with use of surface electromyography (sEMG). It is not invasive method which enables to measure EMG signal through placing stickers with electrodes directly on a skin.
The stomatognathic system represents an important element of human physiology, constituting a part of the digestive, respiratory, and sensory systems. One of the signs of temporomandibular joint disorders (TMD) can be the formation of vibroacoustic and electromyographic (sEMG) phenomena. The aim of the study was to evaluate the effectiveness of temporomandibular joint rehabilitation in patients suffering from locking of the temporomandibular joint (TMJ) articular disc by analysis of vibrations, sEMG registration of masseter muscles, and hypertension of masticatory muscles. In this paper, a new system for the diagnosis of TMD during rehabilitation is proposed, based on the use of vibration and sEMG signals. The operation of the system was illustrated in a case study, a 27-year-old woman with articular dysfunction of the TMJ. The first results of TMD diagnostics using the k-nearest neighbors method are also presented on a group of fifteen people (ten women and five men). Vibroacoustic registration of temporomandibular joints, sEMG registration of masseter muscles, and functional manual analysis of the TMJ were simultaneously assessed before employing splint therapy with stomatognathic physiotherapy. Analysis of vibrations with the monitoring of sEMG in dysfunctions of the TMJ can lead to improve differential diagnosis and can be an objective way of monitoring the rehabilitation process of TMD.
The civilisation progress has caused noise to become one of essential pathogenic and life comfort decreasing factors. There are several legal regulations aimed at controlling the noise influence on humans. Assessment of the twenty-four-hour influence of noises in various environments constitutes an essential problem. The answer can be supplied by 24-hour monitoring of the sound pressure. This paper is an attempt to learn the real loading of humans by noises. A personal noise indicator was used in measurements. The human 24-hour activity was divided into cycles allowing to model noise hazards. The collected data, even though they did not signal exceeding of individual standards, in the 24-hour period indicated the essential noise influence. These results indicate the need of investigations to recognise the 24-hour noise load of a human, with taking into account various forms of their activity and the need of rest.
Algorithms used to determine the vibrations to which hand-tool operators are exposed take into account only vibrations measured on a tool. Thus, the significant influence of constraints joining the elements of the tool-operator system is neglected. This paper attempts to determine the influence of grip on vibrations recorded both on the tool and on the limb. The estimation was based on the use of the wavelet transfer function, in which the analysis was done by filtration with wavelet functions. Signals recorded with the specially designed system were utilised in investigations.
As a consequence of recent implementations of EU Directives related to noise protection more and more students of various AGH-UST programs are introduced to the basics of acoustic measurements. Students at various levels of theoretical background in the field of acoustic measurements are offered practical training in measurements using digital sound analyzers. The situation would be optimal if each student could have a device at his/her own disposal. Unfortunately, such a situation is not possible at the moment because of various reasons.With the above problem in mind, a dedicated software package has been developed, implemented in the LabVIEW environment, which allows detailed studies of problems related to the acoustic signal measurement using sound level meters, as well as tasks in spectral analysis (1/1 and 1/3 band filters) and narrow-band (FFT) analysis. With such organization during the introductory laboratory classes each student is offered a direct individual contact with a virtual device that is properly pre-programmed for realization of a well-constructed learning process. It definitely facilitates understanding of the essence of acoustic signal measurements and provides a good basis for further laboratory work carried out as a team-activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.