The problem of recovering a signal from its phaseless Fourier transform measurements, called Fourier phase retrieval, arises in many applications in engineering and science. Fourier phase retrieval poses fundamental theoretical and algorithmic challenges. In general, there is no unique mapping between a one-dimensional signal and its Fourier magnitude and therefore the problem is ill-posed. Additionally, while almost all multidimensional signals are uniquely mapped to their Fourier magnitude, the performance of existing algorithms is generally not well-understood. In this chapter we survey methods to guarantee uniqueness in Fourier phase retrieval. We then present different algorithmic approaches to retrieve the signal in practice. We conclude by outlining some of the main open questions in this field.
Considering the ambiguousness of the discrete-time phase retrieval problem to recover a signal from its Fourier intensities, one can ask the question: what additional information about the unknown signal do we need to select the correct solution within the large solution set? Based on a characterization of the occurring ambiguities, we investigate different a priori conditions in order to reduce the number of ambiguities or even to receive a unique solution. Particularly, if we have access to additional magnitudes of the unknown signal in the time domain, we can show that almost all signals with finite support can be uniquely recovered. Moreover, we prove that an analogous result can be obtained by exploiting additional phase information.Key words: discrete one-dimensional phase retrieval for complex signals, compact support, additional magnitude and phase information in time domain
In this paper, we show that sparse signals f representable as a linear combination of a finite number N of spikes at arbitrary real locations or as a finite linear combination of B-splines of order m with arbitrary real knots can be almost surely recovered from2 up to trivial ambiguities. The constructive proof consists of two steps, where in the first step Prony's method is applied to recover all parameters of the autocorrelation function and in the second step the parameters of f are derived. Moreover, we present an algorithm to evaluate f from its Fourier intensities and illustrate it at different numerical examples.
Gromov-Wasserstein (GW) distances are generalizations of Gromov-Haussdorff and Wasserstein distances. Due to their invariance under certain distance-preserving transformations they are well suited for many practical applications. In this paper, we introduce a concept of multi-marginal GW transport as well as its regularized and unbalanced versions. Then we generalize a bi-convex relaxation of the GW transport to our multi-marginal setting which is tight if the cost function is conditionally negative definite in a certain sense. The minimization of this relaxed model can be done by an alternating algorithm, where each step can be performed by a Sinkhorn scheme for a multi-marginal transport problem. We show a relation of our multi-marginal GW problem for a tree-structured cost function to an (unbalanced) GW barycenter problem and present different proof-of-concept numerical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.