Whey protein supplementation improves body composition by modestly increasing lean mass without influencing changes in fat mass. Body composition improvements from WP are more robust when combined with ER .
There is a shift in thinking about dietary protein requirements from daily requirements to individual meal requirements. Per meal, stimulation of muscle protein synthesis has a saturable dose relationship with the quantity of dietary protein consumed. Protein intake above the saturable dose does not further contribute to the synthetic response; the “excess” amino acids are predominantly oxidized. Given that daily dietary protein intake is finite, finding protein distribution patterns that both reduce amino acid oxidation and maximize their contribution towards protein synthesis (in theory improving net balance) could be “optimal” and is of practical scientific interest to promote beneficial changes in skeletal muscle-related outcomes. This article reviews both observational and randomized controlled trial research on the protein distribution concept. The current evidence on the efficacy of consuming an “optimal” protein distribution to favorably influence skeletal muscle-related changes is limited and inconsistent. The effect of protein distribution cannot be sufficiently disentangled from the effect of protein quantity. Consuming a more balanced protein distribution may be a practical way for adults with marginal or inadequate protein intakes (<0.80 g·kg−1·d−1) to achieve a moderately higher total protein intake. However, for adults already consuming 0.8–1.3 g·kg−1·d−1, the preponderance of evidence supports that consuming at least one meal that contains sufficient protein quantity to maximally stimulate muscle protein synthesis, independent of daily distribution, is helpful to promote skeletal muscle health.
A Mediterranean-style healthy eating pattern (MED-HEP) supports metabolic health, but the utility of including low-glycemic index (GI) foods to minimize postprandial glucose excursions remain unclear. Therefore, we investigated the relative contribution of GI towards improvements in postprandial glycemia and glycemic variability after adopting a MED-HEP. We conducted a randomized, controlled dietary intervention, comparing high- versus low-GI diets in a multi-national (Italy, Sweden, and the United States) sample of adults at risk for type 2 diabetes. For 12 weeks, participants consumed either a low-GI or high-GI MED-HEP. We assessed postprandial plasma glucose and insulin responses to high- or low-GI meals, and daily glycemic variability via continuous glucose monitoring at baseline and post-intervention. One hundred sixty adults (86 females, 74 males; aged 55 ± 11 y, BMI 31 ± 3 kg/m2, mean ± SD) with ≥two metabolic syndrome traits completed the intervention. Postprandial insulin concentrations were greater after the high-GI versus the low-GI test meals at baseline (p = 0.004), but not post-intervention (p = 0.17). Postprandial glucose after the high-GI test meal increased post-intervention, being significantly higher than that after the low-GI test meal (35%, p < 0.001). Average daily glucose concentrations decreased in both groups post-intervention. Indices of 24-h glycemic variability were reduced in the low-GI group as compared to baseline and the high-GI intervention group. These findings suggest that low-GI foods may be an important feature within a MED-HEP.
Under stressful conditions such as energy restriction (ER) and physical activity, the RDA for protein of 0.8 g · kg−1 · d−1 may no longer be an appropriate recommendation. Under catabolic or anabolic conditions, higher protein intakes are proposed to attenuate the loss or increase the gain of whole-body lean mass, respectively. No known published meta-analysis compares protein intakes greater than the RDA with intakes at the RDA. Therefore, we conducted a systematic review and meta-analysis to assess the effects of protein intakes greater than the RDA, compared with at the RDA, on changes in whole-body lean mass. Three researchers independently screened 1520 articles published through August 2018 using the PubMed, Scopus, CINAHL, and Cochrane databases, with additional articles identified in published systematic review articles. Randomized, controlled, parallel studies ≥6 wk long with apparently healthy adults (≥19 y) were eligible for inclusion. Data from 18 studies resulting in 22 comparisons of lean mass changes were included in the final overall analysis. Among all comparisons, protein intakes greater than the RDA benefitted changes in lean mass relative to consuming the RDA [weighted mean difference (95% CI): 0.32 (0.01, 0.64) kg, n = 22 comparisons]. In the subgroup analyses, protein intakes greater than the RDA attenuated lean mass loss after ER [0.36 (0.06, 0.67) kg, n = 14], increased lean mass after resistance training (RT) [0.77 (0.23, 1.31) kg, n = 3], but did not differentially affect changes in lean mass [0.08 (−0.59, 0.75) kg, n = 7] under nonstressed conditions (no ER + no RT). Protein intakes greater than the RDA beneficially influenced changes in lean mass when adults were purposefully stressed by the catabolic stressor of dietary ER with and without the anabolic stressor of RT. The RDA for protein is adequate to support lean mass in adults during nonstressed states. This review was registered at www.crd.york.ac.uk/prospero as CRD 42018106532.
Background Globally, accumulation of intermuscular adipose tissue (IMAT) is positively associated with insulin resistance. Whether this association is observed consistently in different skeletal muscles and encompasses other markers of cardiometabolic health is not well known. Objectives The purpose of this secondary analysis study was to investigate associations among thigh or calf IMAT stores and indices of cardiometabolic health in adults who are overweight and obese participating in dietary interventions. A subset of calf data was analyzed to assess relations between IMAT in the gastrocnemius (type II fiber predominance) and soleus (type I fiber predominance) with markers of cardiometabolic health. Materials and Methods Thigh and calf compositions were assessed via magnetic resonance imaging in 113 subjects (mean ± SD, age: 50 ± 16 y (range: 21–77 y), BMI: 31 ± 3 kg/m2), 103 of which completed dietary interventions with or without energy restriction-induced weight loss. A subset of data (n = 37) was analyzed for relations between muscle compartments (gastrocnemius and soleus) and cardiometabolic health. IMAT was regressed separately against fasting serum glucose concentrations, insulin, homeostatic model assessment-insulin resistance (HOMA-IR), and lipids and lipoproteins. Results In general, total thigh IMAT was predictive of markers of glucose control, while total calf IMAT was not. Specifically, baseline thigh IMAT was positively associated with fasting glucose, insulin, and HOMA-IR. IMAT content changes in any depot did not predict improvement in cardiometabolic health. Conclusions The strength of the relationship between IMAT and glucose control-related indices of cardiometabolic health is dependent on IMAT location. Specifically, greater IMAT in the thigh is a better predictor of cardiometabolic risk than greater IMAT in the calf in adults who are overweight and obese.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.