In this work, we have designed and synthesized nickel-laden dendritic plasmonic colloidosomes of Au (black gold-Ni). The photocatalytic CO 2 hydrogenation activities of black gold-Ni increased dramatically to the extent that measurable photoactivity was only observed with the black gold-Ni catalyst, with a very high photocatalytic CO production rate (2464 ± 40 mmol g Ni −1 h −1 ) and 95% selectivity. Notably, the reaction was carried out in a flow reactor at low temperature and atmospheric pressure without external heating. The catalyst was stable for at least 100 h. Ultrafast transient absorption spectroscopy studies indicated indirect hot-electron transfer from the black gold to Ni in less than 100 fs, corroborated by a reduction in Au−plasmon electron−phonon lifetime and a bleach signal associated with Ni d-band filling. Photocatalytic reaction rates on excited black gold-Ni showed a superlinear power law dependence on the light intensity, with a power law exponent of 5.6, while photocatalytic quantum efficiencies increased with an increase in light intensity and reaction temperature, which indicated the hot-electron-mediated mechanism. The kinetic isotope effect (KIE) in light (1.91) was higher than that in the dark (∼1), which further indicated the electron-driven plasmonic CO 2 hydrogenation. Black gold-Ni catalyzed CO 2 hydrogenation in the presence of an electron-accepting molecule, methyl-p-benzoquinone, reduced the CO production rate, asserting the hot-electron-mediated mechanism. Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that CO 2 hydrogenation took place by a direct dissociation path via linearly bonded Ni−CO intermediates. The outstanding catalytic performance of black gold-Ni may provide a way to develop plasmonic catalysts for CO 2 reduction and other catalytic processes using black gold.
Optomechanical crystals, purposely designed and fabricated semiconductor nanostructures, are used to enhance the coupling between the electromagnetic field and the mechanical vibrations of matter at the nanoscale. However, in real optomechanical crystals, imperfections open extra channels where the transfer of energy is lost, reducing the optomechanical coupling efficiency. Here, we quantify the role of disorder in a paradigmatic one-dimensional optomechanical crystal with full phononic and photonic bandgaps. We show how disorder can be exploited as a resource to enhance the optomechanical coupling beyond engineered structures, thus providing a new toolset for optomechanics.
Changes in agricultural practices enabled the circulation of N-containing species, making converting nitrate into ammonia (fertilizer) highly desirable. Herein, we propose a photosystem composed of NiO/Au plasmon/TiO2 that selectively produces ammonia from nitrates at neutral pH and room temperature with visible light via a combination of electrochemical and plasmon hot electrons (i.e., it is a photoelectrochemical process). The system effectively suppresses the undesirable hydrogen evolution reaction and converts the superfluous hot holes into atmospheric oxygen. The role of the hot electrons is to boost catalytic performance, enabling higher reaction rates at lower potentials. The process paves the way for agricultural practices that recycle nutrients, improving process circularity and reducing fertilizer costs.
There is an urgent need for efficient solutionprocessable p-type semiconductors. Copper(I) iodide (CuI) has attracted attention as a potential candidate due to its good electrical properties and ease of preparation. However, its carrier dynamics still need to be better understood. Carrier dynamics after bandgap excitation yielded a convoluted signal of free carriers (positive signal) and a negative feature, which was also present when the material was excited with sub-bandgap excitation energies. This previously unseen feature was found to be dependent on measurement temperature and attributed to negative photoconductivity. The unexpected signal relates to the formation of polarons or strongly bound excitons. The possibility of coupling CuI to plasmonic sensitizers is also tested, yielding positive results. The outcomes mentioned above could have profound implications regarding the applicability of CuI in photocatalytic and photovoltaic systems and could also open a whole new range of possible applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.