BackgroundTo close a refractory full thickness macular hole (FTMH) by adjacent subretinal fluid application to release the elastic retina from the retinal pigment epithelium (RPE).Case presentationA 83 years old patient presented an old FTMH with a diameter of 1444 μm. After confirming intraoperatively the complete release of the epiretinal membrane around the FTMH, we installed 3 small subretinal blebs around the hole, to release the adjacent retina from the RPE. The mobilized retina was gently moved towards the macular center. A silicone oil tamponade was installed to secure a proper healing and observation of the FTMH. The closure of the 1444 μm FTMH was seen on indirect ophthalmoscopy and confirmed by OCT 5 days after surgery by restoring the retinal architecture. A late reopening was not apparent at the postoperative observations. Visual acuity improved from hand motion to 20/200 at 4 weeks postoperative.ConclusionAlthough FTMH develop by epiretinal tangential traction, large FTMH may persist even after complete release of its epiretinal traction. Subretinal fluid application may release the flexible retina from the RPE to achieve a relocation at the central fovea facilitating an anatomical closure of the macular hole.
We present a new synthesis protocol for a multivalent, multimodality, nucleophilic nanoparticle ideal for in vivo imaging. Stability requirements necessitated covalent cross-linking of the carbohydrate cage, easy functionalization the introduction of sterically accessible amine groups. The new protocol aimed at more uniform particle size, less clustering and superior magnetic properties compared with commercial nanoparticles. Particles were precipitated from Fe(2+) and Fe(3+) in the presence of 10 kDa dextran monodispersed from the aerosol phase. Cross-linking was achieved with epichlorhydrin, nuclophilication with NH3, purification with ultrafiltration and dialysis. Particles and a commercial product (Rienso®, Takeda Pharma) underwent physicochemical characterizations. Biocompatibility was assessed by Resazurin on LLC-PK1 cells; the internalization rate was measured for three cell lines (HAEC, HASMC, HT29). Core size was 5.61 ± 1.25 nm; hydrodynamic size was 49.56 ± 11.73 nm. The number of sterically accessible amine groups averaged 9.9. The cores showed cubic magnetite structure. Values of r1 and r2 were 10.9 and 148.17 mM(-1) s(-1). Cellular viability was unchanged after incubation. Introduction of aerosol phase dextran resulted in a reduction of the overall hydrodynamic diameter and a narrower size distribution of the synthesized particles. Electron tomography visualized for the first time the postulated 'hairy layer' of the dextran coating and enabled the measurement of the overall diameter of 100.2 ± 7.92 nm. The resulting nanoparticle is biocompatible, functionalizable and detectable at nanomolar concentrations with MRI and optical imaging. It can potentially serve as a platform for multimodal molecular imaging and targeted therapy approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.