Abstract. Trading-rule representation is an important factor to consider when designing a quantitative trading system. This study implements a trading strategy as a rule-based policy. The result is an intuitive human-readable format which allows for seamless integration of domain knowledge. The components of a policy are specified and represented as a set of rewrite rules in a context-free grammar. These rewrite rules define how the components can be legally assembled. Thus, strategies derived from the grammar are well-formed, domain-specific, solutions. A grammar-based Evolutionary Algorithm, Grammatical Evolution (GE), is then employed to automatically evolve intra-day trading strategies for the U.S. Stock Market. The GE methodology managed to discover profitable rules with realistic transaction costs included. The paper concludes with a number of suggestions for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.