Early cortical progenitor cells of the ventricular zone (VZ) differ from later progenitor cells of the subventricular zone (SVZ) in cell-type generation and their level of epidermal growth factor receptors (EGFRs). To determine whether differences in their behavior are causally related to EGFR number/density, we introduced extra EGFRs into VZ cells with a retrovirus in vivo and in vitro. This results in premature expression of traits characteristic of late SVZ progenitor cells, including migration patterns, differentiation into astrocytes, and proliferation of multipotential cells to form spheres. The choice between proliferation and differentiation depends on ligand concentration and progenitor cell age and may reflect different thresholds of stimulation. The level of EGFRs expressed by progenitor cells in the cortex may therefore contribute to the timing of their maturation and choice of response to pleiotropic environmental signals.
Spatiotemporal expression patterns of six members of the Eph gene family (EphA4, EphA3, EphB2, ephrin-B1, ephrin-A2, and ephrin-A5) were characterized immunocytochemically at various stages of chick cerebellar development. EphA4 expression is observed in the cerebellar anlage as early as embryonic day 5 (E5) and continues in the posthatch cerebellum. During the early period of cerebellar development (E3-E8), complementarity is observed between EphA4 and ephrin-A5 expression within the cerebellar-isthmal region. By E8, differential expression of EphA4 in parasagittal Purkinje cell bands is evident, and the expression remains banded in the posthatch cerebellum. Banded expression of the ephrin-A5 ligand complements EphA4 expression during the middle period (E9-E15). During this period, ephrin-A2 and EphA3 are coexpressed in a banded pattern and with variable correlation to EphA4. Variability in the banding expression is observed for EphA4, EphA3, ephrin-A5, and ephrin-A2 across different lobes, and graded complementarity in the expression pattern of EphA3 and ephrin-A5 is observed in the external granular layer between the posterior and anterior lobes. Analysis of Purkinje cell birth date in correlation with Eph-ephrin expression during the middle period reveals that early-born cells express EphA4, whereas late-born cells express ephrin-A5. Finally, EphA4 expression domains are respected by migrating granule cell ribbons, which express both ephrin-B1 and EphB2. These expression patterns suggest multiple roles for the Eph-ephrin system in cerebellar development, including demarcation/enforcement of boundaries of the cerebellar anlage, formation/maintenance of Purkinje cell compartments, and restriction of the early phase of granule cell migration to ribbons.
Seventeen cases of spindled melanomas and eleven cases of epithelioid melanomas were immunolabeled with various melanoma and Schwann cell markers. Standard melanoma markers included S100, HMB45, HMB50, tyrosinase, and Melan A. Schwann cell markers included the p75 neurotrophin receptor (p75NTR), glial fibrillary acidic protein (GFAP), and the L1 adhesion protein. The degree of immunocytochemical labeling was scored by levels of both intensity and pervasiveness. The results confirmed a distinct difference in labeling between epithelioid and spindled melanomas. The p75NTR was strongly expressed in spindled melanomas and weakly expressed in the epithelioid melanomas. The usual melanoma markers, including HMB45, HMB50, MelanA, and tyrosinase had the reverse pattern, being strongly expressed in virtually all epithelioid melanomas, but rarely expressed in the spindled variants. S100 was unique among the markers in being expressed by both epithelioid and spindled melanomas. Glial fibrillary acidic protein and L1 adhesion protein were expressed moderately, with preferential labeling of the spindled melanomas. The greatest immunophenotypic difference between spindled and epithelioid melanomas was the high abundance of p75NTR expression in spindled melanomas. The functional significance of the high level of p75 neurotrophin receptor expression may contribute to the high predisposition of perineural extension in the desmoplastic subset of spindled melanomas.
Objective:To determine the immunophenotypic differences between uveal and cutaneous melanomas, employing standard melanoma markers as well as p75 neurotrophin receptor (p75NTR) and microphthalmia transcription factor (MITF).Design: Fifteen uveal melanomas (5 spindle, 5 epithelioid, and 5 mixed uveal subtypes) were immunolabeled with a panel of antibodies that included S100, tyrosinase, melan-A, HMB-45 and HMB-50 combination, MITF, and p75NTR. The results were tabulated on the basis of intensity and pervasiveness of the labeling and compared with a prior study on cutaneous spindle and epithelioid melanomas. Results:In contrast to its strong labeling of cutaneous melanomas, S100 immunolabeling of uveal melanomas was weak and variable. p75NTR, known to differentiate spindle from epithelioid melanomas of the skin, did not immunolabel uveal melanomas. HMB-45, HMB-50, tyrosinase, melan-A, and MITF immunolabeled all uveal melanomas strongly, irrespective of the histologic subtype, but not cutaneous melanomas. Microphthalmia transcription factor was especially clear in its labeling of uveal melanomas. Conclusions:Although cutaneous and uveal melanomas share many molecular markers in common, there are differences between the 2 types of melanoma. First, the level of expression of S100 differs between cutaneous and uveal melanomas. Second, while cutaneous melanomas can be further subdivided into spindle and epithelioid types based on their immunophenotype, the uveal melanomas cannot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.