To understand better the role of genes in controlling ovule development, a female-sterile mutant, aintegumenta (ant), was isolated from Arabidopsis. In ovules of this mutant, integuments do not develop and megasporogenesis is blocked at the tetrad stage. As a pleiotropic effect, narrower floral organs arise in reduced numbers. More complete loss of floral organs occurs when the ant mutant is combined with the floral homeotic mutant apetala2, suggesting that the two genes share functions in initiating floral organ development. The ANT gene was cloned by transposon tagging, and sequence analysis showed that it is a member of the APETALA2-like family of transcription factor genes. The expression pattern of ANT in floral and vegetative tissues indicates that it is involved not only in the initiation of integuments but also in the initiation and early growth of all primorida except roots.
Neurogenesis in the hippocampal dentate gyrus persists throughout life and is increased by seizures. The dentate granule cell (DGC) layer is often abnormal in human and experimental temporal lobe epilepsy, with dispersion of the layer and the appearance of ectopic granule neurons in the hilus. We tested the hypothesis that these abnormalities result from aberrant DGC neurogenesis after seizure-induced injury. Bromodeoxyuridine labeling, in situ hybridization, and immunohistochemistry were used to identify proliferating progenitors and mature DGCs in the adult rat pilocarpine temporal lobe epilepsy model. We also examined dentate gyri from epileptic human hippocampal surgical specimens. Prox-1 immunohistochemistry and pulse-chase bromodeoxyuridine labeling showed that progenitors migrate aberrantly to the hilus and molecular layer after prolonged seizures and differentiate into ectopic DGCs in rat. Neuroblast marker expression indicated the delayed appearance of chainlike progenitor cell formations extending into the hilus and molecular layer, suggesting that seizures alter migratory behavior of DGC precursors. Ectopic putative DGCs also were found in the hilus and molecular layer of epileptic human dentate gyrus. These findings indicate that seizure-induced abnormalities of neuroblast migration lead to abnormal integration of newborn DGCs in the epileptic adult hippocampus, and implicate aberrant neurogenesis in the development or progression of recurrent seizures.
SummaryIn shoots of the garden pea, the bioactive gibberellin (GA 1 ) is synthesised from GA 20 , and the enzyme which catalyses this step (a GA 3-oxidase Ð PsGA3ox1) is encoded by Mendel's LE gene. It has been reported previously that decapitation of the shoot (excision of the apical bud) dramatically reduces the conversion of [ ]GA 1 in stems, and here we show that endogenous GA 1 and PsGA3ox1 transcript levels are similarly reduced. We show also that these effects of decapitation are completely reversed by application of the auxin indole-3-acetic acid (IAA) to the`stump' of decapitated plants. Gibberellin A 20 is also converted to an inactive product, GA 29 , and this step is catalysed by a GA 2-oxidase, PsGA2ox1. In contrast to PsGA3ox1, PsGA2ox1 transcript levels were increased by decapitation and reduced by IAA application. Decapitation and IAA treatment did not markedly affect the level of GA 1 precursors. It is suggested that in intact pea plants, auxin from the apical bud moves into the elongating internodes where it (directly or indirectly) maintains PsGA3ox1 transcript levels and, consequently, GA 1 biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.