1. The electrophysiological and pharmacological properties of slow afterpotentials in large layer V neurons from cat sensorimotor cortex were studied in an in vitro slice preparation using intracellular recording and single-microelectrode voltage clamp. These properties were used to assess the role of afterpotential mechanisms in prolonged excitability changes. 2. The mean duration of a slow afterhyperpolarization (sAHP) was 13.5 s following 100 spikes evoked at 100 Hz. Its time course was best described by two exponential components, which decayed with time constants of several hundred milliseconds (the early sAHP) and several seconds (the late sAHP). The amplitude of both the early and late components were sensitive to membrane potential and raised extracellular K+ concentration [( K+]o). 3. The early sAHP was reduced when divalent cations were substituted for Ca2+, whereas the late sAHP was unaffected. We conclude that a Ca2+-mediated K+ conductance is responsible for much of the early sAHP. In the presence of tetrodotoxin (TTX), 1-s voltage-clamp steps were used to evoke slow AHPs or outward ionic currents. These AHPs and currents were abolished in Ca2+-free perfusate, but they had a maximum duration of only a few seconds. Thus the slowest outward currents we could observe during voltage clamp in TTX were responsible only for the early sAHP. 4. The possible role of an electrogenic Na+-K+ pump in the late sAHP was examined by applying ouabain to the slice. Ouabain did not reduce selectively the late sAHP, and its effect was best explained by a decrease in intracellular K+ concentration and an increase in [K+]o. 5. Muscarinic and beta-adrenergic agonists reduced or abolished the entire (early and late) sAHP. Neither type of agonist affected the Ca2+-dependent, apamin-sensitive medium-duration afterhyperpolarization (35). We conclude that both the Ca2+-mediated K+ conductance underlying the early sAHP and the Ca2+-independent mechanisms underlying the late sAHP are sensitive to at least two classes of transmitter agonists. 6. We focused on the muscarinic effects. When concentrations greater than 5 microM were employed, the entire (early and late) sAHP was replaced by a slow afterdepolarization (sADP). Muscarine reduced the sAHP directly by reducing the underlying outward ionic currents and indirectly by causing the sADP. The sADP was Ca2+-mediated, since it was abolished by Ca2+-free perfusate but not by TTX. 7. The ionic currents underlying the sAHP and the sADP influenced excitability for seconds following evoked repetitive firing.(ABSTRACT TRUNCATED AT 400 WORDS)
1. Potassium conductances were studied in large layer V neurons using an in vitro slice preparation of cat sensorimotor cortex. The kinetics and pharmacological sensitivity of K+ currents were studied directly using single microelectrode voltage clamp and indirectly by evoking single or multiple spikes and recording the spike repolarization and subsequent afterhyperpolarizations (AHPs). 2. A fast-decaying afterhyperpolarization (fAHP) and a subsequent medium-duration afterhyperpolarization (mAHP) followed a single spike. The amplitude and duration of the mAHP increased when multiple spikes were evoked at a fast rate (e.g., 100 Hz), and a slower afterhyperpolarization (sAHP) appeared only after sustained repetitive firing. 3. All AHPs were reduced by membrane potential hyperpolarization and raised extracellular K+ concentration, suggesting they were caused by an increased K+ conductance. Only the mAHP and sAHP reversed at the estimated value of potassium equilibrium potential (-100 mV), whereas the mean reversal potential of the fAHP was nearly identical to the mean value of resting potential (-71 mV). 4. Mechanisms underlying spike repolarization, the fAHP, and the mAHP were investigated. Two rapidly activating outward currents, a fast-inactivating current and a slowly inactivating delayed rectifier, were detected by voltage clamp. Both currents were reduced rapidly by tetraethylammonium (TEA). The fast transient current was reduced slowly after divalent cations were substituted for Ca2+ (through a mechanism unrelated to blockade of Ca2+ channels), whereas the delayed rectifier was unaffected. 5. Spike duration was increased and the fAHP was abolished only by blocking agents that reduced the fast outward currents. Effects of extracellular and intracellular TEA were similar. Effects of TEA and Ca2+-free perfusate were additive and resembled the effects of intracellular Cs+. The addition of apamin, d-tubocurare, or Cd2+ was ineffective. We conclude that the two fast outward currents reflect pharmacologically and kinetically separate K+ conductances that are primarily responsible for spike repolarization and the fAHP. 6. Voltage-clamp studies revealed two additional outward currents, which were persistent and Ca2+-mediated. Each current activated and deactivated slowly, but the kinetics of one component were approximately 10 times slower than the other. The decay of these currents gave rise to AHPs resembling the mAHP and the early sAHP. 7. Neither the mAHP nor the sAHP was reduced by TEA. The mAHP was reduced when divalent cations were substituted for Ca2+ or when Cd2+, apamin, or d-tubocurare were added.(ABSTRACT TRUNCATED AT 400 WORDS)
The Kv2 family of voltage-gated potassium channel ␣ subunits, comprising Kv2.1 and Kv2.2, mediate the bulk of the neuronal delayed rectifier K ϩ current in many mammalian central neurons. Kv2.1 exhibits robust expression across many neuron types and is unique in its conditional role in modulating intrinsic excitability through changes in its phosphorylation state, which affect Kv2.1 expression, localization, and function. Much less is known of the highly related Kv2.2 subunit, especially in forebrain neurons. Here, through combined use of cortical layer markers and transgenic mouse lines, we show that Kv2.1 and Kv2.2 are localized to functionally distinct cortical cell types. Kv2.1 expression is consistently high throughout all cortical layers, especially in layer (L) 5b pyramidal neurons, whereas Kv2.2 expression is primarily limited to neurons in L2 and L5a. In addition, L4 of primary somatosensory cortex is strikingly devoid of Kv2.2 immunolabeling. The restricted pattern of Kv2.2 expression persists in Kv2.1-KO mice, suggesting distinct cell-and layer-specific functions for these two highly related Kv2 subunits. Analyses of endogenous Kv2.2 in cortical neurons in situ and recombinant Kv2.2 expressed in heterologous cells reveal that Kv2.2 is largely refractory to stimuli that trigger robust, phosphorylationdependent changes in Kv2.1 clustering and function. Immunocytochemistry and voltage-clamp recordings from outside-out macropatches reveal distinct cellular expression patterns for Kv2.1 and Kv2.2 in intratelencephalic and pyramidal tract neurons of L5, indicating circuit-specific requirements for these Kv2 paralogs. Together, these results support distinct roles for these two Kv2 channel family members in mammalian cortex.
We examined the effects of recent discharge activity on [Ca2+]i in neocortical pyramidal cells. Our data confirm and extend the observation that there is a linear relationship between plateau [Ca2+]i and firing frequency in soma and proximal apical dendrites. The rise in [Ca2+] activates K+ channels underlying the afterhyperpolarization (AHP), which consists of 2 Ca(2+)-dependent components: the medium AHP (mAHP) and the slow AHP (sAHP). The mAHP is blocked by apamin, indicating involvement of SK-type Ca(2+)-dependent K+ channels. The identity of the apamin-insensitive sAHP channel is unknown. We compared the sAHP and the mAHP with regard to: 1) number and frequency of spikes versus AHP amplitude; 2) number and frequency of spikes versus [Ca2+]i; 3) IAHP versus [Ca2+]i. Our data suggest that sAHP channels require an elevation of [Ca2+]i in the cytoplasm, rather than at the membrane, consistent with a role for a cytoplasmic intermediate between Ca2+ and the K+ channels. The mAHP channels appear to respond to a restricted Ca2+ domain.
We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K + currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and ∼80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K + current by 25-50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 nM) also inhibited ∼40% of the slowly inactivating K + current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody-and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.