The insulin-sensitizing compound troglitazone has evolved into a promising therapeutic agent for type II diabetes. It improves insulin sensitivity and lipoprotein metabolic profiles and lowers blood pressure in humans and rodents. Because troglitazone has insulin-like effects on a number of tissues, we hypothesized that it may reduce vascular tone through stimulation of endothelial-derived nitric oxide (NO) production or by diminution of vascular smooth muscle cell (VSMC) intracellular calcium ([Ca2+]i). Our results show that troglitazone decreases norepinephrine-induced contractile responses in the rat tail artery, an effect not reversed by the NO inhibitor L-nitroarginine methyl ester (L-NAME). In contrast, troglitazone significantly inhibited L-type Ca2+ currents in freshly dissociated rat tail artery and aortic VSMCs and in cultured VSMCs. The data suggest that troglitazone attenuates vascular contractility via a mechanism involving VSMC [Ca2+]i but independent from endothelial generation of NO. Because insulin has been shown to affect vascular tone by both of these mechanisms, troglitazone only partially mimics insulin action in this tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.