Activity-dependent changes in synaptic function are believed to underlie the formation of memories. Two prominent examples are long-term potentiation (LTP) and long-term depression (LTD), whose mechanisms have been the subject of considerable scrutiny over the past few decades. Here we review the growing literature that supports a critical role for AMPA receptor trafficking in LTP and LTD, focusing on the roles proposed for specific AMPA receptor subunits and their interacting proteins. While much work remains to understand the molecular basis for synaptic plasticity, recent results on AMPA receptor trafficking provide a clear conceptual framework for future studies.
Addiction is a state of compulsive drug use; despite treatment and other attempts to control drug taking, addiction tends to persist. Clinical and laboratory observations have converged on the hypothesis that addiction represents the pathological usurpation of neural processes that normally serve reward-related learning. The major substrates of persistent compulsive drug use are hypothesized to be molecular and cellular mechanisms that underlie long-term associative memories in several forebrain circuits (involving the ventral and dorsal striatum and prefrontal cortex) that receive input from midbrain dopamine neurons. Here we review progress in identifying candidate mechanisms of addiction.
Long-term potentiation of synaptic transmission in the hippocampus is the leading experimental model for the synaptic changes that may underlie learning and memory. This review presents a current understanding of the molecular mechanisms of this long-lasting increase in synaptic strength and describes a simple model that unifies much of the data that previously were viewed as contradictory.
Two general forms of synaptic plasticity that operate on different timescales are thought to contribute to the activity-dependent refinement of neural circuitry during development: (1) long-term potentiation (LTP) and long-term depression (LTD), which involve rapid adjustments in the strengths of individual synapses in response to specific patterns of correlated synaptic activity, and (2) homeostatic synaptic scaling, which entails uniform adjustments in the strength of all synapses on a cell in response to prolonged changes in the cell's electrical activity. Without homeostatic synaptic scaling, neural networks can become unstable and perform suboptimally. Although much is known about the mechanisms underlying LTP and LTD, little is known about the mechanisms responsible for synaptic scaling except that such scaling is due, at least in part, to alterations in receptor content at synapses. Here we show that synaptic scaling in response to prolonged blockade of activity is mediated by the pro-inflammatory cytokine tumour-necrosis factor-alpha (TNF-alpha). Using mixtures of wild-type and TNF-alpha-deficient neurons and glia, we also show that glia are the source of the TNF-alpha that is required for this form of synaptic scaling. We suggest that by modulating TNF-alpha levels, glia actively participate in the homeostatic activity-dependent regulation of synaptic connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.