We present CP-JKU submission to MediaEval 2019; a Receptive Field-(RF)-regularized and Frequency-Aware CNN approach for tagging music with emotion/mood labels. We perform an investigation regarding the impact of the RF of the CNNs on their performance on this dataset. We observe that ResNets with smaller receptive fields -originally adapted for acoustic scene classification -also perform well in the emotion tagging task. We improve the performance of such architectures using techniques such as Frequency Awareness and Shake-Shake regularization, which were used in previous work on general acoustic recognition tasks. 1 The source code is published at https
The noisy channel model has been applied to a wide range of problems, including spelling correction. These models consist of two components: a source model and a channel model. Very little research has gone into improving the channel model for spelling correction.This paper describes a new channel model for spelling correction, based on generic string to string edits. Using this model gives significant performance improvements compared to previously proposed models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.