The Finite Difference in Time Domain numerical (FDTD) method is a well know and mature technique in computational electrodynamics. Usually FDTD is used in the analysis of electromagnetic structures, and antennas. However still there is a high computational burden, which is a limitation for use in combination with optimization algorithms. The parallelization of FDTD to calculate in GPU is possible using Matlab and CUDA tools. For instance, the simulation of a planar array, with a three dimensional FDTD mesh 790x276x588, for 6200 time steps, takes one day -elapsed time-using the CPU of an Intel Core i3 at 2.4GHz in a personal computer, 8Gb RAM. This time is reduced 120 times when the calculation is parallelized and carried out in a Graphics Processing Unit (GPU) NVIDIA GeForce GTX 1080 Ti 11264 MB GDDR 5X. The elapsed time is reduced substantially, but also the simplicity of calculation and usefulness of a Matlab implementation. The elapsed time reduction is so substantial that the FDTD-Matlab-CUDA can be combined with optimization algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.