The dynamics of an inviscid and incompressible fluid flow on a Riemannian manifold is governed by the Euler equations. Recently, Tao [35,36] launched a programme to address the global existence problem for the Euler and Navier Stokes equations based on the concept of universality. In this article we prove that the Euler equations exhibit universality features. More precisely, we show that any non-autonomous flow on a compact manifold can be extended to a smooth solution of the Euler equations on some Riemannian manifold of possibly higher dimension. The solutions we construct are stationary of Beltrami type, so they exist for all time. Using this result, we establish the Turing completeness of the Euler flows, i.e. that there exist solutions that encode a universal Turing machine. The proofs exploit the correspondence between contact topology and hydrodynamics, which allows us to import the flexibility principles from the contact realm, in the form of geometric h-principles for isocontact embeddings.
Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, Nonlinearity 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier–Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore’s works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian S3 and speculate on its implications concerning Tao’s approach to the blow-up problem in the Navier–Stokes equations.
Tichler proved in [24] that a manifold admitting a smooth non vanishing and closed one-form fibers over a circle. More generally a manifold admitting k independent closed one-forms fibers over a torus T k . In this article we explain a version of this construction for manifolds with boundary using the techniques of b-calculus [18,13]. We explore new applications of this idea to Fluid Dynamics and more concretely in the study of stationary solutions of the Euler equations. In the study of Euler flows on manifolds, two dichotomic situations appear. For the first one, in which the Bernoulli function is not constant, we provide a new proof of Arnold's structure theorem and describe b-symplectic structures on some of the singular sets of the Bernoulli function. When the Bernoulli function is constant, a correspondence between contact structures with singularities [19] and what we call b-Beltrami fields is established, thus mimicking the classical correspondence between Beltrami fields and contact structures (see for instance [8]). These results provide a new technique to analyze the geometry of steady fluid flows on non-compact manifolds with cylindrical ends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.