We investigated the effects of climate variability on the thermal structure of Lake Tahoe, California-Nevada, 1970, and with principal components analysis and step-wise multiple regression, related the volume-weighed average lake temperature to trends in climate. We then used a 1-dimensional hydrodynamic model to show that the observed trends in the climatic forcing variables can reasonably explain the observed changes in the lake. Between 1970 and 2002, the volume-weighted mean temperature of the lake increased at an average rate of 0.015 • C yr −1 . Trends in the climatic drivers include 1) upward trends in maximum and minimum daily air temperature at Tahoe City; and 2) a slight upward trend in downward long-wave radiation. Changes in the thermal structure of the lake include 1) a long-term warming trend, with the highest rates near the surface and at 400 m; 2) an increase in the resistance of the lake to mixing and stratification, as measured by the Schmidt Stability and Birge Work; 3) a trend toward decreasing depth of the October thermocline. The long-term changes in the thermal structure of Lake Tahoe may interact with and exacerbate the well-documented trends in the lake's clarity and primary productivity.
The watershed of Ward Creek, a tributary to oligotrophic Lake Tahoe in the Sierra Nevada, has been investigated since 1971 with the objective of improving our knowledge of processes of nutrient and sediment release and transport to the lake. Quantitative data on selected stream water parameters were collected for 3 yr (1972—1975) at three stations on Ward Creek, two on the main upper tributaries and one near the stream mouth. Comparative data were collected at a stream mouth station on adjacent Blackwood Creek in the 3rd yr. The parameters were selected on the basis of their significance to eutrophication of Lake Tahoe. Precipitation in a normal year is over 90% snow but annual patterns vary widely and rainfall at any time of year can be highly important in sediment and nutrient transport. Water discharge and the flux of suspended sediments, NO3—N, phosphorus, iron and trace metals were dominated by the spring snowmelt runoff from mid—April to mid—June. However, in 1974 heavy fall and summer rains accounted for a large percentage of the annual flux of sediments and nutrients in a total of only 14 d. The spring runoff was characterized by distinct diel water discharge patterns. Similar but not coincident patterns were found to exist for sediments and nutrients, including NO3—N, but not for soluble phosphorus. The Ward watershed has 87% the area of Blackwood but discharge proportionately much lower quantities of sediment and nutrients in comparable water yields per hectare in water year 1975. This contrast in fluxes was probably accounted for in the history of greater disturbance by man in Blackwood Canyon. The principal source of suspended sediments in Ward Creek was streambank erosion in the lower reaches of the channel. The dominant form of inorganic nitrogen in Ward was NO3—N derived from precipitation, symbiotic nitrogen fixation and nitrification of organic nitrogen in forest soil. Phosphorus and iron were almost entirely in particulate form and thus their periods of flux occurred during high flows and sediment transport. Sediment and nutrient loading of Lake Tahoe from the Ward and Blackwood watersheds reflects a history of soil disturbance and vegetation removal. Logging, fire and stream channel diversion have been the dominant perturbations. Conservative extrapolation of annual loading data from this study to the entire basin indicates that algal nutrient levels in the lake probably have increased sufficiently in the century of man's intensive disturbance of the basin watersheds to account for increased phytoplankton and periphyton production that have been measured and observed since 1958.
A temperate deep lake, Lake Kuttara, Hokkaido 148 m depth at the deepest point was completely frozen in winter in the 20 th century. However, non-freezing of the lake over winter occurred four times in the 21 st century, which is probably due to global warming. In order to understand how thermal regime of the lake responds to climate change, its heat storage was calculated by estimating heat budget of the lake and monitoring water temperature at the deepest point for 1 June 2014-31 May 2016. As a result, the temporal variation of heat storage from the heat budget was very consistent with that from the direct temperature measurement the determination coefficient R 2 = 0.903. A sensitivity analysis was conducted by numerically changing main meteorological factors air temperature, solar radiation, wind speed, precipitation for the heat storage obtained from the heat budget estimate. The increase in air temperature and precipitation was very effective to increase the heat storage. It is noted that, considering the increasing rate of air temperature 0.024°C/yr , the lake could be permanently unfrozen in about two decades.
Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m 2 /decade although the summer (May-October) average SI increased at a higher rate (25.42 kg/m 2 /decade) during the period 1968-2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21 st Century, and the B1 in which emissions slow and then level off by the late 21 st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m 2 /decade and 8.66 kg/m 2 /decade, respectively for GFDLA2 and GFDLB1, respectively during 2014-2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.