Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest GWAS to date of DSM-IV diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case/control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; p = 9.8E-13) and African ancestries (rs2066702; p = 2.2E-9). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, ADHD, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and non-pathological drinking behaviors.
Excessive alcohol consumption is one of the leading causes of preventable death in the United States. Approximately 14% of those who use alcohol meet criteria during their lifetime for alcohol dependence, which is characterized by tolerance, withdrawal, inability to stop drinking, and continued drinking despite serious psychological or physiological problems. We explored genetic influences on alcohol dependence among 1,897 European-American and African-American subjects with alcohol dependence compared with 1,932 unrelated, alcohol-exposed, nondependent controls. Constitutional DNA of each subject was genotyped using the Illumina 1M beadchip. Fifteen SNPs yielded P < 10 −5 , but in two independent replication series, no SNP passed a replication threshold of P < 0.05. Candidate gene GABRA2 , which encodes the GABA receptor α2 subunit, was evaluated independently. Five SNPs at GABRA2 yielded nominal (uncorrected) P < 0.05, with odds ratios between 1.11 and 1.16. Further dissection of the alcoholism phenotype, to disentangle the influence of comorbid substance-use disorders, will be a next step in identifying genetic variants associated with alcohol dependence.
Recently, genetic association findings for nicotine dependence, smoking behavior, and smoking-related diseases converged to implicate the chromosome 15q25.1 region, which includes the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit genes. In particular, association with the nonsynonymous CHRNA5 SNP rs16969968 and correlates has been replicated in several independent studies. Extensive genotyping of this region has suggested additional statistically distinct signals for nicotine dependence, tagged by rs578776 and rs588765. One goal of the Consortium for the Genetic Analysis of Smoking Phenotypes (CGASP) is to elucidate the associations among these markers and dichotomous smoking quantity (heavy versus light smoking), lung cancer, and chronic obstructive pulmonary disease (COPD). We performed a meta-analysis across 34 datasets of European-ancestry subjects, including 38,617 smokers who were assessed for cigarettes-per-day, 7,700 lung cancer cases and 5,914 lung-cancer-free controls (all smokers), and 2,614 COPD cases and 3,568 COPD-free controls (all smokers). We demonstrate statistically independent associations of rs16969968 and rs588765 with smoking (mutually adjusted p-values<10−35 and <10−8 respectively). Because the risk alleles at these loci are negatively correlated, their association with smoking is stronger in the joint model than when each SNP is analyzed alone. Rs578776 also demonstrates association with smoking after adjustment for rs16969968 (p<10−6). In models adjusting for cigarettes-per-day, we confirm the association between rs16969968 and lung cancer (p<10−20) and observe a nominally significant association with COPD (p = 0.01); the other loci are not significantly associated with either lung cancer or COPD after adjusting for rs16969968. This study provides strong evidence that multiple statistically distinct loci in this region affect smoking behavior. This study is also the first report of association between rs588765 (and correlates) and smoking that achieves genome-wide significance; these SNPs have previously been associated with mRNA levels of CHRNA5 in brain and lung tissue.
The completion of a draft sequence of the human genome and the promise of rapid single-nucleotide-polymorphism-genotyping technologies have resulted in a call for the abandonment of linkage studies in favor of genome scans for association. However, there exists a large class of genetic models for which this approach will fail: purely epistatic models with no additive or dominance variation at any of the susceptibility loci. As a result, traditional association methods (such as case/control, measured genotype, and transmission/disequilibrium test [TDT]) will have no power if the loci are examined individually. In this article, we examine this class of models, delimiting the range of genetic determination and recurrence risks for two-, three-, and four-locus purely epistatic models. Our study reveals that these models, although giving rise to no additive or dominance variation, do give rise to increased allele sharing between affected sibs. Thus, a genome scan for linkage could detect genomic subregions harboring susceptibility loci. We also discuss some simple multilocus extensions of single-locus analysis methods, including a conditional form of the TDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.