The crustacean sinus gland (SG) is a well-defined neuroendocrine site that produces numerous hemolymph-borne agents including the most complex class of endocrine signaling molecules—neuropeptides. Via a multifaceted mass spectrometry (MS) approach, 70 neuropeptides were identified including orcokinins, orcomyotropin, crustacean hyperglycemic hormone (CHH) precursor-related peptides (CPRPs), red pigment concentrating hormone (RPCH), pigment dispersing hormone (PDH), proctolin, RFamides, RYamides, and HL/IGSL/IYRamide. Among them, 15 novel orcokinins, 9 novel CPRPs, one novel orcomyotropin, one novel Ork/Orcomyotropin-related and one novel PDH were de novo sequenced via collision induced dissociation (CID) from the SG of a model organism Callinectes sapidus. Electron transfer dissociation (ETD) was used for sequencing of intact CPRPs due to their large size and charge state. Capillary isoelectric focusing (CIEF) was employed for separation of members of the orcokinin family which is one of the most abundant neuropeptide families observed in the SG. Collectively, our study represents the most complete characterization of neuropeptides of the SG and provides a foundation for future investigation of the physiological function of neuropeptides in the SG of C. sapidus.
Cerebrospinal fluid (CSF) is a low protein content biological fluid with dynamic range spanning at least nine orders of magnitude in protein content and is in direct contact with the brain. A modified IgY-14 immunodepletion treatment was performed to enhance analysis of the low volumes of CSF that are obtainable from mice. As a model system in which to test this approach, we utilized transgenic mice that over-express the intermediate filament glial fibrillary acidic protein (GFAP). These mice are models for Alexander disease (AxD), a severe leukodystrophy in humans. From the CSF of control and transgenic mice we report the identification of 289 proteins, with relative quantification of 103 proteins. Biological and technical triplicates were performed to address animal variability as well as reproducibility in mass spectrometric analysis. Relative quantitation was performed using distributive normalized spectral abundance factor (dNSAF) spectral counting analysis. A panel of biomarker proteins with significant changes in the CSF of GFAP transgenic mice has been identified with validation from ELISA and microarray data, demonstrating the utility of our methodology and providing interesting targets for future investigations on the molecular and pathological aspects of AxD.
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology. Proteomics technologies have evolved to produce large datasets of proteins or peptides involved in various biological and disease progression processes producing testable hypothesis for complex biological questions. This review provides an introduction and insight to relevant topics in proteomics and peptidomics including biological material selection, sample preparation, separation techniques, peptide fragmentation, post-translation modifications, quantification, bioinformatics, and biomarker discovery and validation. In addition, current literature and remaining challenges and emerging technologies for proteomics and peptidomics are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.