Abstract:The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the "best measurement" of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.
Abstract:The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 19 elements. The standard atomic weights of four elements have been revised based on recent determinations of isotopic abundances in natural terrestrial materials: cadmium to 112.414 (4)
Abstract:The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of five elements. The atomic weight of bromine has changed from 79.904(1) to the interval [79.901, 79.907], germanium from 72.63(1) to 72.630(8), indium from 114.818(3) to 114.818(1), magnesium from 24.3050(6) to the interval [24.304, 24.307], and mercury from 200.59(2) to 200.592(3). For bromine and magnesium, assignment of intervals for the new standard atomic weights reflects the common occurrence of variations in the atomic weights of those elements in normal terrestrial materials.
A long known way of anchoring isotope ratio values to the SI system is by means of gravimetrically prepared isotopic mixtures. Thermal ionization mass spectrometry (TIMS) is the traditionally associated measurement technique, but multi-collector double focusing inductively coupled plasma (MC-ICP)-MS now appears to be an attractive alternative. This absolute calibration strategy necessitates that mass discrimination effects remain invariant in time and across the range of isotope ratios measured. It is not the case with MC-ICPMS and the present work illustrates, in the case of Zn isotopic measurements carried out using locally produced synthetic Zn isotope mixtures (IRMM-007 series), how this calibration strategy must be adjusted. First, variation in mass discrimination effects across the measurement sequence is propagated as an uncertainty component. Second, linear proportionality during each individual measurement between normalized mass discrimination and the average mass of the isotope ratios is used to evaluate mass discrimination for the ratios involving low abundance isotopes. Third, linear proportionality between mass discrimination and the logarithm of the isotope ratio values for n(67Zn)/n(64Zn) and n(68Zn)/n(64Zn) in the mixtures is used iteratively to evaluate mass discrimination for the same ratios in the isotopically enriched materials. Fourth, ratios in natural-like materials (including IRMM-3702 and IRMM-651) are calibrated by external bracketing using the isotopic mixtures. The relative expanded uncertainty (k = 2) estimated for n(68Zn)/n(64Zn) and n(67Zn)/n(64Zn) ratio values in the synthetic isotopic mixtures and the natural-like zinc samples was in the range of 0.034 to 0.048%. The uncertainty on the weighing (0.01%, k = 1) was the largest contributor to these budgets. The agreement between these results and those obtained with a single detector TIMS and with another MC-ICPMS further validated this work. The absolute isotope ratio values found for IRMM-3702-material also proposed as "delta 0" for delta-scale isotopic measurements-are n(66Zn)/n(64Zn) = 0.56397 (30), n(67Zn)/n(64Zn) = 0.082166 (35), n(68Zn)/n(64Zn) = 0.37519 (16), and n(70Zn)/n(64Zn) = 0.012418 (23). The derived Zn atomic weight value Ar(Zn) = 65.37777 (22) differs significantly from the current IUPAC value by Chang et al. [1]. Remeasurement, with isotopic mixtures from the IRMM-007 series, of the Zn isotope ratios in the same Chang et al. [1] material have revealed large systematic differences (1.35 (27)% per atomic mass unit) that suggest unrecognized measurement biases in their results.
Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without thePresented are updated tables of the standard atomic weights and their uncertainties estimated by combining experimental uncertainties and terrestrial variabilities. In addition, this report again contains an updated table of relative atomicmass values and half-lives of selected radioisotopes. Changes in the evaluated isotope abundance values from those published in 1997 are relatively minor and will be published in a major review of each element in 2003.Many elements have a different isotopic composition in some nonterrestrial materials. Some recent data on parent nuclides that might affect isotope abundances or atomic-weight values are included in this report for the information of the interested scientific community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.