We examined the role of the Autographa californica nucleopolyhedrovirus (AcMNPV)-encoded chitinase in virus pathogenesis in Trichoplusia ni larvae. In conjunction with the AcMNPV-encoded cathepsin, it promotes liquefaction of the host in the latter stages of infection. Insects infected with virus mutants lacking either the chitinase A gene (chiA) or cathepsin gene (cath) remained intact several days after death. However, if both viruses were used to infect insects, liquefaction of the host was restored. Chitinase was readily detected in AcMNPV-infected insects using a chitinase-specific antibody, but it was absent from insects infected with a chiA deletion mutant (AcchiA-). The chitinase was also detected in polyhedra purified from AcMNPV-infected insects but not in those from AcchiA-. However, polyhedra derived from a virus lacking an intact chiA were no less effective in initiating an infection in second instar T. ni larvae than those of the unmodified AcMNPV. It was also demonstrated that the virus chitinase retained high levels of activity between pH 3.0 and 10.0. In contrast, chitinases isolated from Serratia marcescens, although active under acidic conditions, rapidly lost activity above pH 7.0 illustrating that despite 57% sequence identity, the two proteins have distinct enzymic activities.
Baculoviruses provide alternatives to chemicals for controlling insect pests and can be applied by spraying. Baculoviruses have a limited host range, but work relatively slowly. They are dissolved in the midgut of insect larvae to release infectious virions which enter gut epithelial cells and begin to replicate. Replication in other organs causes extensive tissue damage and eventually death. This process can take 4-5 days, but in the field may last for more than a week, allowing the larvae to feed for longer and thereby damaging the host plant. Baculovirus expression vectors expressing foreign genes, such as those for insect-specific toxins, hormones or enzymes, might alleviate this problem. We have now constructed a recombinant baculovirus derived from Autographa californica nuclear polyhedrosis virus containing an insect-specific neurotoxin from the venom of the North African (Algerian) scorpion, Androctonus australis Hector. The neurotoxin acts by causing specific modifications to the Na+ conductance of neurons, producing a presynaptic excitatory effect leading to paralysis and death; it has no effect in mice. Expression of the neurotoxin by the virus causes a reduction in the time required to kill the host insect.
Engineered derivatives of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus (AcMNPV) possessing a unique restriction site provide a source of viral DNA that can be linearized by digestion with a specific endonuclease. Circular or linearized DNA from two such viruses were compared in terms of their infectivity and recombinogenic activities. The linear forms were 15- to 150-fold less infectious than the corresponding circular forms, when transfected into Spodoptera frugiperda cells using the calcium phosphate method. Linear viral DNA was, however, proficient at recombination on co-transfection with an appropriate transfer vector. Up to 30% of the progeny viruses were recombinant, a 10-fold higher fraction of recombinants than was obtained from co-transfections with circular AcMNPV DNA. The isolation of a recombinant baculovirus expression vector from any of the AcMNPV transfer vectors currently in use can thus be facilitated by linearization of the viral DNA at the appropriate location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.